Skip to main content

Urinary Protein Markers for the Detection and Prognostication of Urothelial Carcinoma

  • Protocol
  • First Online:
Urothelial Carcinoma

Abstract

Bladder cancer diagnosis and surveillance is mainly based on cystoscopy and urine cytology. However, both methods have significant limitations; urine cytology has a low sensitivity for low-grade tumors, while cystoscopy is uncomfortable for the patients. Therefore, in the last decade urine analysis was the subject of intensive research resulting in the identification of many potential biomarkers for the detection, surveillance, or prognostic stratification of bladder cancer. Current trends move toward the development of multiparametric models to improve the diagnostic accuracy compared with single molecular markers. Recent technical advances for high-throughput and more sensitive measurements have led to the development of multiplex assays showing potential for more efficient tools toward future clinical application. In this review, we focus on the findings of urinary protein research in the context of detection and prognostication of bladder cancer. Furthermore, we provide an up-to-date overview on the recommendations for the quality evaluation of published studies as well as for the conduction of future urinary biomarker studies.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-1-4939-7234-0_25

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pasin E, Josephson DY, Mitra AP et al (2008) Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev Urol 10:31–43

    PubMed  PubMed Central  Google Scholar 

  2. Castillo-Martin M, Domingo-Domenech J, Karni-Schmidt O et al (2010) Molecular pathways of urothelial development and bladder tumorigenesis. Urol Oncol 28:401–408

    Article  CAS  PubMed  Google Scholar 

  3. Knowles MA, Hurst CD (2015) Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer 15:25–41

    Article  CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–322

    Article  CAS  Google Scholar 

  5. McConkey DJ, Lee S, Choi W et al (2010) Molecular genetics of bladder cancer: emerging mechanisms of tumor initiation and progression. Urol Oncol 28:429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang SS, Boorjian SA, Chou R et al (2016) Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J Urol 196:1021–1029

    Article  PubMed  Google Scholar 

  7. Kaplan AL, Litwin MS, Chamie K (2014) The future of bladder cancer care in the USA. Nat Rev Urol 11:59–62

    Article  PubMed  Google Scholar 

  8. Mossanen M, Gore JL (2014) The burden of bladder cancer care: direct and indirect costs. Curr Opin Urol 24:487–491

    Article  PubMed  Google Scholar 

  9. Yeung C, Dinh T, Lee J (2014) The health economics of bladder cancer: an updated review of the published literature. Pharmacoeconomics 32:1093–1104

    Article  PubMed  Google Scholar 

  10. Rosser CJ, Urquidi V, Goodison S et al (2013) Urinary biomarkers of bladder cancer: an update and future perspectives. Biomark Med 7:779–790

    Article  CAS  PubMed  Google Scholar 

  11. Budman LI, Kassouf W, Steinberg JR et al (2008) Biomarkers for detection and surveillance of bladder cancer. Can Urol Assoc J 2:212–221

    Article  PubMed  PubMed Central  Google Scholar 

  12. D'Costa JJ, Goldsmith JC, Wilson JS et al (2016) A systematic review of the diagnostic and prognostic value of urinary protein biomarkers in Urothelial bladder cancer. Bladder Cancer 2:301–317

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chatziharalambous D, Lygirou V, Latosinska A et al (2016) Analytical performance of ELISA assays in urine: one more bottleneck towards biomarker validation and clinical implementation. PLoS One 11:e0149471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Goebell PJ, Groshen SL, Schmitz-Dräger BJ (2008) Guidelines for development of diagnostic markers in bladder cancer. World J Urol 26:5–11

    Article  PubMed  Google Scholar 

  15. Lotan Y, Shariat SF, Schmitz-Dräger BJ et al (2010) Considerations on implementing diagnostic markers into clinical decision making in bladder cancer. Urol Oncol 28:441–448

    Article  PubMed  Google Scholar 

  16. Kobayashi T, Owczarek TB, McKiernan JM et al (2015) Modelling bladder cancer in mice: opportunities and challenges. Nat Rev Cancer 15:42–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oxford Centre for Evidence-based Medicine Levels of Evidence (2016). Available from: http://www.cebm.net

  18. Goebell PJ, Groshen S, Schmitz-Dräger BJ et al (2014) The International bladder cancer Bank: proposal for a new study concept. Urol Oncol 22:277–284

    Article  Google Scholar 

  19. Goebell PJ, Kamat AM, Sylvester RJ et al (2014) Assessing the quality of studies on the diagnostic accuracy of tumor markers. Urol Oncol 32:1051–1060

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wells G et al (2014) Newcastle-Otawa scale. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

  21. Whiting P, Rutjes AW, Reitsma JB et al (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 3:25

    Article  PubMed  PubMed Central  Google Scholar 

  22. Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2 Group.QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  23. Bossuyt PM, Reitsma JB, Bruns DE et al (2003) Standards for reporting of diagnostic accuracy the STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem 49:7–18

    Article  CAS  PubMed  Google Scholar 

  24. Bossuyt PM, Reitsma JB, Bruns DE et al (2004) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Fam Pract 21:4–10

    Article  PubMed  Google Scholar 

  25. McShane LM, Altman DG, Sauerbrei W et al (2005) Statistics subcommittee of the NCI-EORTC working group on cancer diagnostics. REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93:387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moore HM, Kelly A, McShane LM et al (2013) Biospecimen reporting for improved study quality (BRISQ). Transfusion 53:e1

    Article  PubMed  Google Scholar 

  27. Simeon-Dubach D, Moore HM (2014) BIO comes into the cold to adopt BRISQ. Biopreserv Biobank 12:223–224

    Article  PubMed  Google Scholar 

  28. Dreier M, Borutta B, Stahmeyer J et al (2010) Comparison of tools for assessing the methodological quality of primary and secondary studies in health technology assessment reports in Germany. GMS Health Technol 6:Doc07

    Google Scholar 

  29. Qi D, Li J, Jiang M et al (2015) The relationship between promoter methylation of p16 gene and bladder cancer risk: a meta-analysis. Int J Clin Exp Med 8:20701–20711

    PubMed  PubMed Central  Google Scholar 

  30. Lopez LM, Chen M, Mullins Long S et al (2015) Steroidal contraceptives and bone fractures in women: evidence from observational studies. Cochrane Database Syst Rev 21(7):CD009849

    Google Scholar 

  31. Thelma Beatriz GC, Isela JR, Alma G et al (2014) Association between HTR2C gene variants and suicidal behaviour: a protocol for the systematic review and meta-analysis of genetic studies. BMJ Open 4:e005423

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hartling L, Milne A, Hamm MP et al (2013) Testing the Newcastle Ottawa scale showed low reliability between individual reviewers. J Clin Epidemiol 66:982–993

    Article  PubMed  Google Scholar 

  33. Oremus M, Oremus C, Hall GB et al (2012) ECT & Cognition Systematic Review Team. Inter-rater and test-retest reliability of quality assessments by novice student raters using the Jadad and Newcastle-Ottawa scales. BMJ Open 2:e001368

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605

    Article  PubMed  Google Scholar 

  35. Xia Y, Liu YL, Yang KH (2010) The diagnostic value of urine-based survivin mRNA test using reverse transcription-polymerase chain reaction for bladder cancer: a systematic review. Chin J Cancer 29:441–446

    Article  PubMed  Google Scholar 

  36. Yang X, Huang H, Zeng Z et al (2013) Diagnostic value of bladder tumor fibronectin in patients with bladder tumor: a systematic review with meta-analysis. Clin Biochem 46:1377–1382

    Article  CAS  PubMed  Google Scholar 

  37. Hollingworth W, Medina LS, Lenkinski RE et al (2006) Interrater reliability in assessing quality of diagnostic accuracy studies using the QUADAS tool. A preliminary assessment. Acad Radiol 13:803–810

    Article  PubMed  Google Scholar 

  38. Whiting PF, Weswood ME, Rutjes AW et al (2006) Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol 6:9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cai Q, Wu Y, Guo Z et al (2015) Urine BLCA-4 exerts potential role in detecting patients with bladder cancers: a pooled analysis of individual studies. Oncotarget 6:37500–37510

    PubMed  PubMed Central  Google Scholar 

  40. Huang YL, Chen J, Yan W et al (2015) Diagnostic accuracy of cytokeratin-19 fragment (CYFRA 21-1) for bladder cancer: a systematic review and meta-analysis. Tumour Biol 36:3137–3145

    Article  CAS  PubMed  Google Scholar 

  41. Smidt N, Rutjes AW, van der Windt DA et al (2006) Reproducibility of the STARD checklist: an instrument to assess the quality of reporting of diagnostic accuracy studies. BMC Med Res Methodol 6:12

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang N, Feng S, Shedden K et al (2011) Urinary glycoprotein biomarker discovery for bladder cancer detection using LC/MS-MS and label-free quantification. Clin Cancer Res 17:3349–3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miyake M, Ross S, Lawton A et al (2013) Investigation of CCL18 and A1AT as potential urinary biomarkers for bladder cancer detection. BMC Urol 13:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Shabayek MI, Sayed OM, Attaia HA et al (2014) Diagnostic evaluation of urinary angiogenin (ANG) and clusterin (CLU) as biomarker for bladder cancer. Pathol Oncol Res 20:859–866

    Article  CAS  PubMed  Google Scholar 

  45. Chen YT, Chen CL, Chen HW et al (2010) Discovery of novel bladder cancer biomarkers by comparative urine proteomics using iTRAQ technology. J Proteome Res 9:5803–5815

    Article  CAS  PubMed  Google Scholar 

  46. Kumar P, Nandi S, Tan TZ et al (2015) Highly sensitive and specific novel biomarkers for the diagnosis of transitional bladder carcinoma. Oncotarget 6:13539–13549

    PubMed  PubMed Central  Google Scholar 

  47. Korman HJ, Peabody JO, Cerny JC et al (1996) Autocrine motility factor receptor as a possible urine marker for transitional cell carcinoma of the bladder. J Urol 155:347–349

    Article  CAS  PubMed  Google Scholar 

  48. Bhagirath D, Abrol N, Khan R et al (2012) Expression of CD147, BIGH3 and Stathmin and their potential role as diagnostic marker in patients with urothelial carcinoma of the bladder. Clin Chim Acta 413:1641–1646

    Article  CAS  PubMed  Google Scholar 

  49. Ebbing J, Mathia S, Seibert FS et al (2014) Urinary calprotectin: a new diagnostic marker in urothelial carcinoma of the bladder. World J Urol 32:1485–1492

    Article  CAS  PubMed  Google Scholar 

  50. Svatek RS, Karam J, Karakiewicz PI et al (2008) Role of urinary cathepsin B and L in the detection of bladder urothelial cell carcinoma. J Urol 179:478–484

    Article  CAS  PubMed  Google Scholar 

  51. Tilki D, Singer BB, Shariat SF et al (2010) CEACAM1: a novel urinary marker for bladder cancer detection. Eur Urol 5:648–654

    Article  CAS  Google Scholar 

  52. Hazzaa SM, Elashry OM, Afifi IK (2010) Clusterin as a diagnostic and prognostic marker for transitional cell carcinoma of the bladder. Pathol Oncol Res 16:101–109

    Article  CAS  PubMed  Google Scholar 

  53. Nakashima M, Matsui Y, Kobayashi T et al (2015) Urine CXCL1 as a biomarker for tumor detection and outcome prediction in bladder cancer. Cancer Biomark 15:357–364

    Article  CAS  PubMed  Google Scholar 

  54. Burnier A, Shimizu Y, Dai Y et al (2015) CXCL1 is elevated in the urine of bladder cancer patients. Springerplus 4:610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Nisman B, Barak V, Shapiro A et al (2002) Evaluation of urine CYFRA 21-1 for the detection of primary and recurrent bladder carcinoma. Cancer 94:2914–2922

    Article  CAS  PubMed  Google Scholar 

  56. Sánchez-Carbayo M, Espasa A, Chinchilla V et al (1999) New electrochemiluminescent immunoassay for the determination of CYFRA 21-1: analytical evaluation and clinical diagnostic performance in urine samples of patients with bladder cancer. Clin Chem 45:1944–1953

    PubMed  Google Scholar 

  57. Fernandez-Gomez J, Rodríguez-Martínez JJ, Barmadah SE et al (2007) Urinary CYFRA 21.1 is not a useful marker for the detection of recurrences in the follow-up of superficial bladder cancer. Eur Urol 51:1267–1274

    Article  CAS  PubMed  Google Scholar 

  58. Pariente JL, Bordenave L, Michel P et al (1997) Initial evaluation of CYFRA 21-1 diagnostic performances as a urinary marker in bladder transitional cell carcinoma. J Urol 158:338–341

    Article  CAS  PubMed  Google Scholar 

  59. Morgan R, Bryan RT, Javed S et al (2013) Expression of engrailed-2 (EN2) protein in bladder cancer and its potential utility as a urinary diagnostic biomarker. Eur J Cancer 49:2214–2222

    Article  CAS  PubMed  Google Scholar 

  60. Ramakumar S, Bhuiyan J, Besse JA et al (1999) Comparison of screening methods in the detection of bladder cancer. J Urol 161:388–394

    Article  CAS  PubMed  Google Scholar 

  61. Mutlu N, Turkeri L, Emerk K (2003) Analytical and clinical evaluation of a new urinary tumor marker: bladder tumor fibronectin in diagnosis and follow-up of bladder cancer. Clin Chem Lab Med 41:1069–1074

    Article  CAS  PubMed  Google Scholar 

  62. Li LY, Yang M, Zhang HB et al (2008) Urinary fibronectin as a predictor of a residual tumour load after transurethral resection of bladder transitional cell carcinoma. BJU Int 102:566–571

    Article  PubMed  Google Scholar 

  63. Chen YT, Chen HW, Domanski D et al (2012) Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers. J Proteomics 75:3529–3545

    Article  CAS  PubMed  Google Scholar 

  64. Orenes-Piñero E, Cortón M, González-Peramato P et al (2007) Searching urinary tumor markers for bladder cancer using a two-dimensional differential gel electrophoresis (2D-DIGE) approach. J Proteome Res 6:4440–4448

    Article  PubMed  CAS  Google Scholar 

  65. Eissa S, Labib RA, Mourad MS et al (2003) Comparison of telomerase activity and matrix metalloproteinase-9 in voided urine and bladder wash samples as a useful diagnostic tool for bladder cancer. Eur Urol 44:687–694

    Article  CAS  PubMed  Google Scholar 

  66. Hakenberg OW, Fuessel S, Richter K et al (2004) Qualitative and quantitative assessment of urinary cytokeratin 8 and 18 fragments compared with voided urine cytology in diagnosis of bladder carcinoma. Urology 64:1121–1126

    Article  PubMed  Google Scholar 

  67. Mian C, Lodde M, Haitel A (2000) Comparison of two qualitative assays, the UBC rapid test and the BTA stat test, in the diagnosis of urothelial cell carcinoma of the bladder. Urology 56:228–231

    Article  CAS  PubMed  Google Scholar 

  68. Sánchez-Carbayo M, Herrero E, Megías J et al (1999) Initial evaluation of the new urinary bladder cancer rapid test in the detection of transitional cell carcinoma of the bladder. Urology 54:656–661

    Article  PubMed  Google Scholar 

  69. Ecke TH, Arndt C, Stephan C et al (2015) Preliminary results of a multicentre study of the UBC rapid test for detection of urinary bladder cancer. Anticancer Res 35:2651–2655

    CAS  PubMed  Google Scholar 

  70. Babjuk M, Kostírová M, Mudra K et al (2002) Qualitative and quantitative detection of urinary human complement factor H-related protein (BTA stat and BTA TRAK) and fragments of cytokeratins 8, 18 (UBC rapid and UBC IRMA) as markers for transitional cell carcinoma of the bladder. Eur Urol 41:34–39

    Article  CAS  PubMed  Google Scholar 

  71. Giannopoulos A, Manousakas T, Gounari A et al (2001) Comparative evaluation of the diagnostic performance of the BTA stat test, NMP22 and urinary bladder cancer antigen for primary and recurrent bladder tumors. J Urol 166:470–475

    Article  CAS  PubMed  Google Scholar 

  72. May M, Hakenberg OW, Gunia S, Pohling P, Helke C, Lübbe L, Nowack R, Siegsmund M, Hoschke B (2007) Comparative diagnostic value of urine cytology, UBC-ELISA, and fluorescence in situ hybridization for detection of transitional cell carcinoma of urinary bladder in routine clinical practice. Urology 70(3):449–453

    Article  PubMed  Google Scholar 

  73. Mian C, Lodde M, Haitel A et al (2000) Comparison of the monoclonal UBC-ELISA test and the NMP22 ELISA test for the detection of urothelial cell carcinoma of the bladder. Urology 55:223–226

    Article  CAS  PubMed  Google Scholar 

  74. Boman H, Hedelin H, Holmäng S (2002) Four bladder tumor markers have a disappointingly low sensitivity for small size and low grade recurrence. J Urol 167:80–83

    Article  PubMed  Google Scholar 

  75. Boman H, Hedelin H, Jacobsson S et al (2002) Newly diagnosed bladder cancer: the relationship of initial symptoms, degree of microhematuria and tumor marker status. J Urol 168:1955–1959

    Article  CAS  PubMed  Google Scholar 

  76. Mungan NA, Vriesema JL, Thomas CM et al (2002) Urinary bladder cancer test: a new urinary tumor marker in the follow-up of superficial bladder cancer. Urology 56:787–792

    Article  Google Scholar 

  77. Kawanishi H, Matsui Y, Ito M et al (2008) Secreted CXCL1 is a potential mediator and marker of the tumor invasion of bladder cancer. Clin Cancer Res 14:2579–2587

    Article  CAS  PubMed  Google Scholar 

  78. Su L, Cao L, Zhou R et al (2013) Identification of novel biomarkers for sepsis prognosis via urinary proteomic analysis using iTRAQ labeling and 2D-LC-MS/MS. PLoS One 8:e54237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bakun M, Niemczyk M, Domanski D et al (2012) Urine proteome of autosomal dominant polycystic kidney disease patients. Clin Proteomics 9:13

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lei T, Zhao X, Jin S et al (2013) Discovery of potential bladder cancer biomarkers by comparative urine proteomics and analysis. Clin Genitourin Cancer 11:56–62

    Article  PubMed  Google Scholar 

  81. Lindén M, Lind SB, Mayrhofer C et al (2012) Proteomic analysis of urinary biomarker candidates for nonmuscle invasive bladder cancer. Proteomics 12:135–144

    Article  PubMed  CAS  Google Scholar 

  82. Majewski T, Spiess PE, Bondaruk J et al (2012) Detection of bladder cancer using proteomic profiling of urine sediments. PLoS One 7:e42452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Urquidi V, Goodison S, Cai Y et al (2012) A candidate molecular biomarker panel for the detection of bladder cancer. Cancer Epidemiol Biomarkers Prev 21:2149–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kreunin P, Zhao J, Rosser C et al (2007) Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling. J Proteome Res 6:2631–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goodison S, Chang M, Dai Y et al (2012) A multi-analyte assay for the non-invasive detection of bladder cancer. PLoS One 7:e47469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosser CJ, Ross S, Chang M et al (2013) Multiplex protein signature for the detection of bladder cancer in voided urine samples. J Urol 190:2257–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen LM, Chang M, Dai Y et al (2014) External validation of a multiplex urinary protein panel for the detection of bladder cancer in a multicenter cohort. Cancer Epidemiol Biomarkers Prev 23:1804–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rosser CJ, Chang M, Dai Y et al (2014) Urinary protein biomarker panel for the detection of recurrent bladder cancer. Cancer Epidemiol Biomarkers Prev 23:1340–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang S, Kou L, Furuya H et al (2016) A Nomogram derived by combination of demographic and biomarker data improves the noninvasive evaluation of patients at risk for bladder cancer. Cancer Epidemiol Biomarkers Prev 25:1361–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shimizu Y, Furuya H, Bryant Greenwood P et al (2016) A multiplex immunoassay for the non-invasive detection of bladder cancer. J Transl Med 14:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Frantzi M, van Kessel KE, Zwarthoff EC et al (2016) Development and validation of urine-based peptide biomarker panels for detecting bladder cancer in a multi-center study. Clin Cancer Res 22:4077–4086

    Article  CAS  PubMed  Google Scholar 

  92. Goodison S, Ogawa O, Matsui Y et al (2016) A multiplex urinary immunoassay for bladder cancer detection: analysis of a Japanese cohort. J Transl Med 14:287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Stein JP, Skinner DG (2006) Radical cystectomy for invasive bladder cancer: long-term results of a standard procedure. World J Urol 24:296–304

    Article  PubMed  Google Scholar 

  94. Poulakis V, Witzsch U, De Vries R (2001) A comparison of urinary nuclear matrix protein-22 and bladder tumour antigen tests with voided urinary cytology in detecting and following bladder cancer: the prognostic value of false-positive results. BJU Int 88:692–701

    Article  CAS  PubMed  Google Scholar 

  95. Raitanen MP, Kaasinen E, Rintala E et al (2001) Prognostic utility of human complement factor H related protein test (the BTA stat test). Br J Cancer 85:552–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bryan RT, Regan HL, Pirrie SJ et al (2015) Protein shedding in urothelial bladder cancer: prognostic implications of soluble urinary EGFR and EpCAM. Br J Cancer 112:1052–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Feng J, He W, Song Y et al (2014) Platelet-derived growth factor receptor beta: a novel urinary biomarker for recurrence of non-muscle-invasive bladder cancer. PLoS One 9:e96671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Svatek RS, Herman MP, Lotan Y et al (2006) Soluble Fas–a promising novel urinary marker for the detection of recurrent superficial bladder cancer. Cancer 106:1701–1707

    Article  CAS  PubMed  Google Scholar 

  99. Yang H, Li H, Wang Z et al (2013) Is urinary soluble Fas an independent predictor of non-muscle-invasive bladder cancer? A prospective chart study. Urol Int 91:456–461

    Article  CAS  PubMed  Google Scholar 

  100. Bryan RT, Shimwell NJ, Wei W et al (2014) Urinary EpCAM in urothelial bladder cancer patients: characterisation and evaluation of biomarker potential. Br J Cancer 110:679–685

    Article  CAS  PubMed  Google Scholar 

  101. Guan Z, Zeng J, Wang Z et al (2014) Urine tenascin-C is an independent risk factor for bladder cancer patients. Mol Med Rep 9:961–966

    Article  CAS  PubMed  Google Scholar 

  102. Durkan GC, Nutt JE, Rajjayabun PH et al (2001) Prognostic significance of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in voided urine samples from patients with transitional cell carcinoma of the bladder. Clin Cancer Res 7:3450–3456

    CAS  PubMed  Google Scholar 

  103. Offersen BV, Knap MM, Horsman MR et al (2010) Matrix metalloproteinase-9 measured in urine from bladder cancer patients is an independent prognostic marker of poor survival. Acta Oncol 49:1283–1287

    Article  CAS  PubMed  Google Scholar 

  104. Durkan GC, Nutt JE, Marsh C et al (2003) Alteration in urinary matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio predicts recurrence in nonmuscle-invasive bladder cancer. Clin Cancer Res 9:2576–2582

    CAS  PubMed  Google Scholar 

  105. Becker M, Szarvas T, Wittschier M et al (2010) Prognostic impact of plasminogen activator inhibitor type 1 expression in bladder cancer. Cancer 116:4502–4512

    Article  CAS  PubMed  Google Scholar 

  106. Kelloniemi E, Rintala E, Finne P et al (2003) Tumor-associated trypsin inhibitor as a prognostic factor during follow-up of bladder cancer. Urology 62:249–253

    Article  PubMed  Google Scholar 

  107. Feldman AS, Banyard J, Wu CL et al (2009) Cystatin B as a tissue and urinary biomarker of bladder cancer recurrence and disease progression. Clin Cancer Res 15:1024–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zimmerman R, Wahren B, Edsmyr F (1980) Assessment of serial CEA determinations in urine of patients with bladder carcinoma. Cancer 46:1802–1809

    Article  CAS  PubMed  Google Scholar 

  109. Arnold SA, Loomans HA, Ketova T et al (2016) Urinary oncofetal ED-A fibronectin correlates with poor prognosis in patients with bladder cancer. Clin Exp Metastasis 33:29–44

    Article  CAS  PubMed  Google Scholar 

  110. Compton DA, Cleveland DW (1993) NuMA is required for the proper completion of mitosis. J Cell Biol 120:947–957

    Article  CAS  PubMed  Google Scholar 

  111. Mizutani Y, Yoshida O, Ukimura O et al (2002) Prognostic significance of a combination of soluble Fas and soluble Fas ligand in the serum of patients with ta bladder cancer. Cancer Biother Radiopharm 17:563–567

    Article  PubMed  Google Scholar 

  112. Szarvas T, vom Dorp F, Ergün S et al (2011) Matrix metalloproteinases and their clinical relevance in urinary bladder cancer. Nat Rev Urol 8:241–254

    Article  CAS  PubMed  Google Scholar 

  113. Szarvas T, Becker M, vom Dorp F et al (2010) Matrix metalloproteinase-7 as a marker of metastasis and predictor of poor survival in bladder cancer. Cancer Sci 101:1300–1308

    Article  CAS  PubMed  Google Scholar 

  114. Szarvas T, Jäger T, Becker M et al (2011) Validation of circulating MMP-7 level as an independent prognostic marker of poor survival in urinary bladder cancer. Pathol Oncol Res 17:325–332

    Article  CAS  PubMed  Google Scholar 

  115. Szarvas T, Singer BB, Becker M et al (2011) Urinary matrix metalloproteinase-7 level is associated with the presence of metastasis in bladder cancer. BJU Int 107:1069–1073

    Article  CAS  PubMed  Google Scholar 

  116. Cruz-Munoz W, Khokha R (2008) The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Crit Rev Clin Lab Sci 45:291–338

    Article  CAS  PubMed  Google Scholar 

  117. Thomas P, Khokha R, Shepherd FA et al (2000) Differential expression of matrix metalloproteinases and their inhibitors in non-small cell lung cancer. J Pathol 190:150–156

    Article  CAS  PubMed  Google Scholar 

  118. Rhee JS, Diaz R, Korets L et al (2004) TIMP-1 alters susceptibility to carcinogenesis. Cancer Res 64:952–961

    Article  CAS  PubMed  Google Scholar 

  119. Brunner A, Prelog M, Verdorfer I et al (2008) EpCAM is predominantly expressed in high grade and advanced stage urothelial carcinoma of the bladder. J Clin Pathol 61:307–310

    Article  CAS  PubMed  Google Scholar 

  120. Brunner A, Mayerl C, Tzankov A et al (2004) Prognostic significance of tenascin-C expression in superficial and invasive bladder cancer. J Clin Pathol 57:927–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feng Z, Kagan J, Pepe M et al (2013) The early detection research Network's specimen reference sets: paving the way for rapid evaluation of potential biomarkers. Clin Chem 59:68–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Research, Development and Innovation Office; Grant number: NKFIH/PD 115616 and by János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Szarvas Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Szarvas, T., Nyirády, P., Ogawa, O., Furuya, H., Rosser, C.J., Kobayashi, T. (2018). Urinary Protein Markers for the Detection and Prognostication of Urothelial Carcinoma. In: Schulz, W., Hoffmann, M., Niegisch, G. (eds) Urothelial Carcinoma. Methods in Molecular Biology, vol 1655. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7234-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7234-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7233-3

  • Online ISBN: 978-1-4939-7234-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics