Skip to main content

Target Identification Using Cell Permeable and Cleavable Chloroalkane Derivatized Small Molecules

  • Protocol
  • First Online:
Proteomics for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1647))

Abstract

An important aspect for gaining functional insight into the activity of small molecules revealed through phenotypic screening is the identification of their interacting proteins. Yet, isolating and validating these interacting proteins remains difficult. Here, we present a new approach utilizing a chloroalkane (CA) moiety capture handle, which can be chemically attached to small molecules to isolate their respective protein targets. Derivatization of small molecules with the CA moiety has been shown to not significantly impact their cell permeability or potency, allowing for phenotypic validation of the derivatized small molecule prior to capture. The retention of cell permeability also allows for treatment of live cells with the derivatized small molecule and the CA moiety enables rapid covalent capture onto HaloTag coated magnetic beads. Additionally, several options are available for the elution of interacting proteins, including chemical cleavage of the CA moiety, competitive elution using excess unmodified small molecule, or sodium dodecyl sulfate (SDS) elution. These features taken together yield a highly robust and efficient process for target identification, including capture of weak or low abundance interactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519

    Article  CAS  PubMed  Google Scholar 

  2. Moellering RE, Cravatt BF (2012) How chemoproteomics can enable drug discovery and development. Chem Biol 19:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414

    Article  CAS  PubMed  Google Scholar 

  4. Fischer JJ, Michaelis S, Schrey AK et al (2010) Capture small molecule mass spectrometry sheds light on the molecular mechanisms of liver toxicity of two Parkinson drugs. Toxicol Sci 113:243

    Article  CAS  PubMed  Google Scholar 

  5. Bantscheff M, Eberhard D, Abraham Y et al (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25:1035–1044

    Article  CAS  PubMed  Google Scholar 

  6. Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33:R311–R323

    Article  Google Scholar 

  7. Flory MR, Griffin RJ, Martin D, Aebersold R (2002) Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol 20:S23–S29

    Article  CAS  PubMed  Google Scholar 

  8. Sato S, Murata A, Shirakawa T, Uesugi M (2010) Biochemical target isolation for novices: affinity-based strategies. Chem Biol 17:616−623

    Article  Google Scholar 

  9. Salisbury CM, Cravatt BF (2008) Optimization of activity-based probes for proteomic profiling of histone deacetylase complexes. J Am Chem Soc 130:2184−2194

    Article  Google Scholar 

  10. Su Y, Ge J, Zhu B et al (2013) Target identification of biologically active small molecules via in situ methods. Curr Opin Chem Biol 17:768−775

    Article  Google Scholar 

  11. Salisbury CM, Cravatt BF (2007) Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc Natl Acad Sci U S A 104:1171–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohana RF, Kirkland TA, Woodroofe CC et al (2015) Deciphering the cellular targets of bioactive small molecules using a chloroalkane capture tag. ACS Chem Biol 10:2316–2324

    Article  PubMed  Google Scholar 

  13. Ohana RF, Levin S, Wood MG et al (2016) Improved deconvolution of protein targets for bioactive small molecules using a palladium cleavable chloroalkane capture tag. ACS Chem Biol 11(9):2608–2617. Submitted

    Article  Google Scholar 

  14. Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  CAS  PubMed  Google Scholar 

  15. Urh M, Rosenberg M (2012) HaloTag, a platform technology for protein analysis. Curr Chem Genomics 6:72–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Encell LP, Ohana FR, Zimmerman K et al (2012) Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands. Curr Chem Genomics 6:55–71

    Article  PubMed  PubMed Central  Google Scholar 

  17. Trost BM, Lee C (2000) Asymmetric allylic alkylation reaction in catalytic asymmetric synthesis, 2nd edn. Wiley-VCH, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Friedman Ohana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mendez-Johnson, J.L., Daniels, D.L., Urh, M., Friedman Ohana, R. (2017). Target Identification Using Cell Permeable and Cleavable Chloroalkane Derivatized Small Molecules. In: Lazar, I., Kontoyianni, M., Lazar, A. (eds) Proteomics for Drug Discovery. Methods in Molecular Biology, vol 1647. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7201-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7201-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7200-5

  • Online ISBN: 978-1-4939-7201-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics