Skip to main content

Chromogenic In Situ Hybridization Methods for microRNA Biomarker Monitoring of Drug Safety and Efficacy

  • Protocol
  • First Online:
Drug Safety Evaluation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1641))

Abstract

Disease research and treatment development have turned to the impact and utility of microRNA. The dynamic and highly specific expression of these molecular regulators can be used to predict and monitor disease progression as well as therapeutic treatment efficacy and safety, thus aiding decisions in patient care. In situ hybridization (ISH) of biopsy material has become a routine clinical pathology procedure for monitoring gene structure, expression, and sample characterization. For ribonucleic acid (RNA), determining cell source and level of expression of these biomarkers gives insight into the cellular function and physiopathology. Identification and monitoring of microRNA biomarkers are made possible through locked nucleic acid (LNA)™-based detection probes. LNA™ enhances the sensitivity and specificity of target binding, most profoundly so for the short, highly similar, microRNA sequences. We present a robust 1-day ISH protocol for formalin-fixed, paraffin-embedded (FFPE) tissue sections based on microRNA-specific LNA™ detection probes which can be labeled with digoxigenin (DIG) or 6-carboxyfluorescein (FAM) and detected through enzyme-linked specific antibodies that catalyze substrates into deposited chromogen products at the target RNA site. The variety of haptens and detection reagents in combination with LNA™ chemistry offer flexibility and ease to multiple target assessment of therapeutic response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  2. Wienholds E, Plasterk RH (2005) MicroRNA function in animal development. FEBS Let 579(26):5911–5922

    Article  CAS  Google Scholar 

  3. Li L, Chen HZ, Chen FF et al (2013) Global microRNA expression profiling reveals differential expression of target genes in 6-hybdroxydopamine-injured MN9D cells. NeuroMolecular Med 15(3):593–604

    Article  CAS  PubMed  Google Scholar 

  4. Huang M, Lou D, Cai Q et al (2014) Characterization of paraquat-induced miRNA profiling response to hNPCs undergoing proliferation. Int J Mol Sci 15(10):18422–18436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Su YW, Chen X, Jiang ZZ et al (2012) A panel of serum microRNAs as specific biomarkers for diagnosis of compound- and herb-induced liver injury in rats. PLoS One 7(5):e37395. doi:10.1371/journal.pone.0037395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu X, Zhang Y, Xu H et al (2015) Identification of differentially expressed microRNAs involved in non-traumatic osteonecrosis through microRNA expression profiling. Gene 565(1):22–29

    Article  CAS  PubMed  Google Scholar 

  7. Gandhi R, Healy B, Gholipour T et al (2013) Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 73(6):729–740

    Article  CAS  PubMed  Google Scholar 

  8. Anderson AL, Stanger SJ, Mihalas BP et al (2015) Assessment of microRNA expression in mouse epididymal epithelial cells and spermatozoa by next generation sequencing. Genom Data 18(6):208–211

    Article  Google Scholar 

  9. Ma L, Li P, Wang R et al (2015) Analysis of novel microRNA targets in drug-sensitive and—insensitive small cell lung cancer cell lines. Oncol Rep 35(3):1611–1621

    PubMed  Google Scholar 

  10. Pellegrini KL, Gerlach CV, Craciun FL et al (2015) Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis. Toxicol Appl Pharmacol 312:42–52. doi:10.1016/j.taap.2015.12.002

    Article  PubMed  Google Scholar 

  11. Koturbash I, Tolleson WH, Guo L et al (2015) microRNAs as pharmacogenomics biomarkers for drug efficacy and drug safety assessment. Biomark Med 9(11):1153–1176

    Article  CAS  PubMed  Google Scholar 

  12. Marrone AK, Beland FA, Pogribny IP (2015) The role for microRNAs in drug toxicity and in safety assessment. Expert Opin Drug Metab Toxicol 11(4):601–611

    Article  CAS  PubMed  Google Scholar 

  13. Thrakral S, Ghoshal K (2015) miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as a miRNA mimic and antimir. Curr Gene Ther 15(2):142–150

    Article  Google Scholar 

  14. Hsu J, Xu Y, Hao J et al (2012) Essential metabolic, anti-inflammatory, and anti-tumourigenic functions of miR-122 in liver. J Clin Invest 122(8):2871–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gebert LFR, Rebhan MAE, Crivelli SEM et al (2014) Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res 42(1):609–621

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Y-N, Li W-F, Zhang Z et al (2013) Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochem Biophys Res Commun 435(4):597–602

    Article  CAS  PubMed  Google Scholar 

  17. Kontaraki JE, Marketou ME, Zacharis EA et al (2014) MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens 8(6):368–375

    Article  CAS  PubMed  Google Scholar 

  18. Yan T, Cui K, Huang X et al (2014) Assessment of therapeutic efficacy of miR-126 with contrast-enhanced ultrasound in preeclampsia rats. Placenta 35(1):23–29

    Article  CAS  PubMed  Google Scholar 

  19. Cheng Y, Liu X, Yang J et al (2009) MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neoinimal lesion formation. Circ Res 105(2):158–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boettger T, Beetz N, Kostin S et al (2009) Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest 119(9):2634–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chivukula RR, Shi G, Acharya A et al (2014) An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell 157(5):1104–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wienholds E, Kloosterman WP, Miska E et al (2005) MicroRNA expression in zebrafish embryonic development. Science 309(5732):310–311

    Article  CAS  PubMed  Google Scholar 

  23. Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43(42):13233–13241

    Article  CAS  PubMed  Google Scholar 

  24. Jorgensen S, Baker A, Møller S et al (2010) Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods 52(4):375–381

    Article  CAS  PubMed  Google Scholar 

  25. Nielsen BS (2012) MicroRNA in situ hybridization. Methods Mol Biol 822:67–84

    Article  CAS  PubMed  Google Scholar 

  26. Nielsen BS, Møller T, Holmstrøm K (2014) Chromogen detection of microRNA in frozen clinical tissue samples using LNA™ probe technology. Methods Mol Biol 1211:77–84

    Article  CAS  PubMed  Google Scholar 

  27. Singh U, Keirstead N, Wolujczyk A et al (2013) General principles and methods for routine automated microRNA in situ hybridization and double labeling with immunohistochemistry. Biotech Histochem 89(4):259–266

    Article  PubMed  Google Scholar 

  28. Toledano H, D’Alterio C, Loza-Coll M et al (2012) Dual fluorescence detection of protein and RNA in Drosophila tissues. Nat Protoc 7(10):1808–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keeney JG, Davis JM, Siegenthaler J et al (2015) DUF1220 protein domains drive proliferation in human neural stem cells and are associated with increased cortical volume in anthropoid primates. Brain Struct Funct 220(5):3053–3060

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen BS, Holmstrøm K (2013) Combined microRNA in situ hybridization and immunohistochemical detection of protein markers. Methods Mol Biol 986:353–365

    Article  CAS  PubMed  Google Scholar 

  31. Sempere LF, Peris M, Yezefski T et al (2010) Fluorescence-based co-detection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors. Clin Cancer Res 16(16):4246–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Darnell DK, Stanislaw S, Kaur S et al (2010) Whole mount in situ hybridization detection of mRNAs using short LNA containing DNA oligonucleotide probes. RNA 16:632–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Exiqon (2016) miRCURY LNA™ microRNA ISH Optimization Kit (FFPE) manual. V.3 http://www.exiqon.com/ls/Documents/Scientific/miRCURY-LNA-microRNA-ISH-Optimization-Kit-manual.pdf

  34. Nielsen BS, Jørgensen S, Fog JU et al (2011) High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis 28:27–38

    Article  CAS  PubMed  Google Scholar 

  35. Knudsen KN, Nielsen BS, Lindebjerg J et al (2015) microRNA-17 is the most up-regulated member of the miR-17-92 cluster during early colon cancer evolution. PLoS One 10(10):e0140503. doi:10.1371/journal. pone.0140503

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mestdagh P, Hartmann N, Baeriswyl L et al (2014) Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 11(8):809–815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Trine Møller at Bioneer for technical expertise as well as Marie-Louise Lunn at Exiqon for her support in the preparation of this manuscript. Exiqon is a QIAGEN company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara R. Gould .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gould, B.R., Damgaard, T., Nielsen, B.S. (2017). Chromogenic In Situ Hybridization Methods for microRNA Biomarker Monitoring of Drug Safety and Efficacy. In: Gautier, JC. (eds) Drug Safety Evaluation. Methods in Molecular Biology, vol 1641. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7172-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7172-5_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7170-1

  • Online ISBN: 978-1-4939-7172-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics