Skip to main content

Computational Prediction of CRISPR/Cas9 Target Sites Reveals Potential Off-Target Risks in Human and Mouse

  • Protocol
  • First Online:
Genome Editing in Animals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1630))

Abstract

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system is a prominent genome engineering technology. In the CRISPR/Cas system, the RNA-guided endonuclease Cas protein introduces a DNA double-stranded break at the genome position recognized by a guide RNA (gRNA) based on complementary base-pairing of about 20-nucleotides in length. The 8- or 12-mer gRNA sequence in the proximal region is especially important for target recognition, and the genes with sequence complementarity to such regions are often disrupted. To carry out target site-specific genome editing, we released the CRISPRdirect (http://crispr.dbcls.jp/) website. This website allows us to select target site-specific gRNA sequences by performing exhaustive searches against entire genomic sequences. In this study, target site-specific gRNA sequences were designed for human, mouse, Drosophila melanogaster, and Caenorhabditis elegans. The calculation results revealed that at least five gRNA sequences, each of them having only one perfectly complementary site in the whole genome, could be designed for more than 95% of genes, regardless of the organism. Next, among those gRNAs, we selected gRNAs that did not have any other complementary site to the unique 12-mer proximal sequences to avoid possible off-target effects. This computational prediction revealed that target site-specific gRNAs are selectable for the majority of genes in D. melanogaster and C. elegans. However, for >50% of genes in humans and mice, there are no target sites without possible off-target effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PE, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. elife 2:e00471

    Article  PubMed  PubMed Central  Google Scholar 

  4. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineerging with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  5. Mohr SE, Hu Y, Ewen-Campen B, Housden BE, Viswanatha R, Perrimon N. (2016) CRISPR guide RNA design for research applications. FEBS J 283(17):3232-3238

    Google Scholar 

  6. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 506:62–67

    Article  Google Scholar 

  7. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amital G, Sorek R (2016) CRISPR-Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol 14:67–76

    Article  Google Scholar 

  9. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sternberg SH, Richter H, Charpentier E, Qimron U (2016) Adaptation in CRISPR-Cas system. Mol Cell 61:797–808

    Article  CAS  PubMed  Google Scholar 

  11. Pattanayak V, Guilinger JP, Liu DR (2014) Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol 546:47–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le JP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197

    Article  CAS  PubMed  Google Scholar 

  13. Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41:9584–9592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sender JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  Google Scholar 

  16. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31:1120–1123

    Article  CAS  PubMed  Google Scholar 

  17. McKinney W (2011) Pandas: a foundational python library for data analysis and statistics. http://www.slideshare.net/wesm/pandas-a-foundational-python-library-for-data-analysis-and-statistics

  18. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95

    Article  Google Scholar 

  19. Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, Wu D, Cong L, Zhang F, Liu JS, Brown M, Liu XS (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25:1147–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farasat I, Salis HM (2016) A biophysical model of CRISPR/Cas9 activity for rational design of genome editing and gene regulation. PLoS Comput Biol 12:e1004724

    Article  PubMed  PubMed Central  Google Scholar 

  21. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MC, Yusa K (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32:267–273

    Article  CAS  PubMed  Google Scholar 

  22. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87

    Article  CAS  PubMed  Google Scholar 

  23. Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, Torigoe SE, Tijan R, Weissman JS (2016) Nucleosomes impede Cas9 access to DNA in vivo and in vitro. elife 5:e12677

    Google Scholar 

  24. Bae S, Kweon J, Kim HS, Kim JS (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11:705–706

    Article  CAS  PubMed  Google Scholar 

  25. Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo. Nat Methods 12:982–988

    Google Scholar 

Download references

Acknowledgment

We thank Dr. Yuki Naito for valuable discussion and technical advice. The English in this document has been checked by at least two professional editors, both native speakers of English. This work was supported by the grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan to K.U.-T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumiko Ui-Tei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, Q., Ui-Tei, K. (2017). Computational Prediction of CRISPR/Cas9 Target Sites Reveals Potential Off-Target Risks in Human and Mouse. In: Hatada, I. (eds) Genome Editing in Animals. Methods in Molecular Biology, vol 1630. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7128-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7128-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7127-5

  • Online ISBN: 978-1-4939-7128-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics