Skip to main content

Modeling Bacterial DNA: Simulation of Self-Avoiding Supercoiled Worm-Like Chains Including Structural Transitions of the Helix

  • Protocol
  • First Online:
The Bacterial Nucleoid

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1624))

Abstract

Under supercoiling constraints, naked DNA, such as a large part of bacterial DNA, folds into braided structures called plectonemes. The double-helix can also undergo local structural transitions, leading to the formation of denaturation bubbles and other alternative structures. Various polymer models have been developed to capture these properties, with Monte-Carlo (MC) approaches dedicated to the inference of thermodynamic properties. In this chapter, we explain how to perform such Monte-Carlo simulations, following two objectives. On one hand, we present the self-avoiding supercoiled Worm-Like Chain (ssWLC) model, which is known to capture the folding properties of supercoiled DNA, and provide a detailed explanation of a standard MC simulation method. On the other hand, we explain how to extend this ssWLC model to include structural transitions of the helix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Thanbichler M, Viollier PH, Shapiro L (2005) The structure and function of the bacterial chromosome. Curr Opin Genet Dev 15:153–162

    Article  CAS  PubMed  Google Scholar 

  2. Blot N, Mavathur R, Geertz M, Travers A, Muskhelishvili G (2006) Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome. EMBO Rep 7:710–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lagomarsino MC, Espeli O, Junier I (2015) From structure to function of bacterial chromosomes: evolutionary perspectives and ideas for new experiments. FEBS Lett 589:2996–3004

    Article  CAS  PubMed  Google Scholar 

  4. Vologodskii AV, Cozzarelli NR (1994) Conformational and thermodynamic properties of supercoiled DNA. Annu Rev Biophys Biomol Struct 23(1):609–643

    Article  CAS  PubMed  Google Scholar 

  5. Vologodskii AV, Marko JF (1997) Extension of torsionally stressed DNA by external force. Biophys J 73:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klenin K, Merlitz H, Langowski J (1998) A Brownian dynamics program for the simulation of linear and circular DNA and other wormlike chain polyelectrolytes. Biophys J 74:780–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marko JF, Siggia ED (1995) Statistical mechanics of supercoiled DNA. Phys Rev E 52:2912–2938

    Article  CAS  Google Scholar 

  8. Lepage T, Képès F, Junier I (2015) Thermodynamics of long supercoiled molecules: insights from highly efficient Monte Carlo simulations. Biophys J 109:135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mirkin SM (2008) Discovery of alternative DNA structures: a heroic decade (1979-1989). Front Biosci 13:1064–1071

    Article  CAS  PubMed  Google Scholar 

  10. Benham CJ (1992) Energetics of the strand separation transition in superhelical DNA. J Mol Biol 225:835–847

    Article  CAS  PubMed  Google Scholar 

  11. Strick TR, Allemand J-F, Bensimon D, Croquette V (1998) Behavior of supercoiled DNA. Biophys J 74:2016–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oberstrass FC, Fernandes LE, Bryant Z (2012) Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA. Proc Natl Acad Sci 109:6106–6111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sheinin MY, Forth S, Marko JF, Wang MD (2011) Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors. Phys Rev Lett 107:108102

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vlijm R, Mashaghi A, Bernard S, Modesti M, Dekker C (2015) Experimental phase diagram of negatively supercoiled DNA measured by magnetic tweezers and fluorescence. Nanoscale 7:3205–3216

    Article  CAS  PubMed  Google Scholar 

  15. Marko JF (2007) Torque and dynamics of linking number relaxation in stretched supercoiled DNA. Phys Rev E 76:21926

    Article  Google Scholar 

  16. Meng H, Bosman J, van der Heijden T, van Noort J (2014) Coexistence of twisted, plectonemic, and melted DNA in small topological domains. Biophys J 106:1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matek C, Ouldridge TE, Doye JPK, Louis AA (2015) Plectoneme tip bubbles: coupled denaturation and writhing in supercoiled DNA. Sci Rep 5:7655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manghi M, Destainville N (2016) Physics of base-pairing dynamics in DNA. Phys Rep 631:1–41

    Google Scholar 

  19. Rybenkov VV, Vologodskii AV, Cozzarelli NR (1997) The effect of ionic conditions on DNA helical repeat, effective diameter and free energy of supercoiling. Nucleic Acids Res 25(7):1412–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Strick T, Bensimon D, Croquette V (1999) Micro-mechanical measurement of the torsional modulus of DNA. Genetica 106:57–62. doi:10.1023/A:1003772626927

    Article  CAS  PubMed  Google Scholar 

  21. Bryant Z, Stone MD, Gore J, Smith SB, Cozzarelli NR, Bustamante C (2003) Structural transitions and elasticity from torque measurements on DNA. Nature 424:338–341

    Article  CAS  PubMed  Google Scholar 

  22. Wu PG, Song L, Clendenning JB, Fujimoto BS, Benight AS, Schurr JM (1988) Interaction of chloroquine with linear and supercoiled DNAs. Effect on the torsional dynamics, rigidity, and twist energy parameter. Biochemistry 27:8128–8144

    Article  CAS  PubMed  Google Scholar 

  23. Bergou M, Wardetzky M, Robinson S, Audoly B, Grinspun E (2008) Discrete elastic rods. ACM Trans Graph 27:63:1–63:12

    Google Scholar 

  24. Carrivain P, Barbi M, Victor J-M (2014) In silico single-molecule manipulation of DNA with rigid body dynamics. PLoS Comput Biol 10:e1003456

    Article  PubMed  PubMed Central  Google Scholar 

  25. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  CAS  Google Scholar 

  26. Newman M, Barkema G (1999) Monte Carlo methods in statistical physics. Clarendon Press, Oxford

    Google Scholar 

  27. Liu Z, Chan HS (2008) Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models. J Chem Phys 128:145104

    Article  PubMed  Google Scholar 

  28. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71:126601

    Article  Google Scholar 

  29.  Manghi M, Palmeri J, Destainville N (2009) Coupling between denaturation and chain conformations in DNA: stretching, bending, torsion and finite size effects. J Phys Condens Matter 21:034104

    Article  PubMed  Google Scholar 

  30. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95:1460–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oberstrass FC, Fernandes LE, Lebel P, Bryant Z (2013) Torque Spectroscopy of DNA:base-pair stability, boundary effects, backbending, and breathing dynamics. Phys Rev Lett 110(17):178103

    Google Scholar 

  32. Rich A, Nordheim A, Wang AH (1984) The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem 53(1):791–846

    Article  CAS  PubMed  Google Scholar 

  33. Gebe JA, Allison SA, Clendenning JB, Schurr JM (1995) Monte Carlo simulations of supercoiling free energies for unknotted and trefoil knotted DNAs. Biophys J 68:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klenin K, Langowski J (2000) Computation of writhe in modeling of supercoiled DNA. Biopolymers 54:307–317

    Article  CAS  PubMed  Google Scholar 

  35. Alexander JW (1928) Topological invariants of knots and links. Trans Am Math Soc 30:275–306

    Article  Google Scholar 

  36. Vologodskii AV, Lukashin AV, Frank-Kamenetskii MD, Anshelevich VV (1974) The knot problem in statistical mechanics of polymer chains. Sov Phys JETP 39:1059

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Junier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lepage, T., Junier, I. (2017). Modeling Bacterial DNA: Simulation of Self-Avoiding Supercoiled Worm-Like Chains Including Structural Transitions of the Helix. In: Espéli, O. (eds) The Bacterial Nucleoid. Methods in Molecular Biology, vol 1624. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7098-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7098-8_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7097-1

  • Online ISBN: 978-1-4939-7098-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics