Skip to main content

Blood and Plasma Proteomics: Targeted Quantitation and Posttranslational Redox Modifications

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1619))

Abstract

Proteome profiling using mass spectrometry is extensively utilized to understand the physiological characteristics of cells, tissues, fluids, and many other biological matrices. From the earliest days of the proteomics era, exploratory analyses of the blood protein complement have attracted a great deal of interest, owing to the pivotal importance of blood cells and biofluids (serum, plasma) for research and biomedical purposes. Once challenged by the high dynamic range of protein concentrations, low sensitivity of mass spectrometers, and poor annotation of proteomics databases, the techniques in this field have quickly evolved in recent years, particularly in the areas of absolute quantification of proteins and in mapping of posttranslational modifications. Here we describe (a) the design and production of heavy isotope-labeled peptides used as reporter internal standards for absolute protein quantification and (b) a redox proteomics approach to optimize sample preparation and database searching to elucidate oxidative modifications to protein amino acids. The two methods achieve complimentary goals in the field of blood research and pave the way for future translation of next-generation proteomics technologies into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  CAS  PubMed  Google Scholar 

  2. Bachi A, Dalle-Donne I, Scaloni A (2013) Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises. Chem Rev 113:596–698. doi:10.1021/cr300073p

    Article  CAS  PubMed  Google Scholar 

  3. Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  CAS  PubMed  Google Scholar 

  4. Dengjel J, Kratchmarova I, Blagoev B (2010) Mapping protein-protein interactions by quantitative proteomics. Methods Mol Biol Clifton NJ 658:267–278

    Article  CAS  Google Scholar 

  5. D’Alessandro A, Rinalducci S, Zolla L (2011) Redox proteomics and drug development. J Proteomics 74:2575–2595

    Article  PubMed  Google Scholar 

  6. Uhlén M, Fagerberg L, Hallström BM et al (2015) Tissue-based map of the human proteome. Science 347:1260419

    Article  PubMed  Google Scholar 

  7. Kim M-S, Pinto SM, Getnet D et al (2014) A draft map of the human proteome. Nature 509:575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rual J-F, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  9. Wilhelm M, Schlegl J, Hahne H et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587

    Article  CAS  PubMed  Google Scholar 

  10. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  CAS  PubMed  Google Scholar 

  11. Tiselius A (1937) Electrophoresis of serum globulin. I. Biochem J 31:313–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liumbruno G, D’Alessandro A, Grazzini G, Zolla L (2010) Blood-related proteomics. J Proteomics 73:483–507

    Article  CAS  PubMed  Google Scholar 

  13. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  PubMed  Google Scholar 

  14. Nanjappa V, Thomas JK, Marimuthu A et al (2014) Plasma Proteome Database as a resource for proteomics research: 2014 update. Nucleic Acids Res 42:D959–D965

    Article  CAS  PubMed  Google Scholar 

  15. Wilson MC, Trakarnsanga K, Heesom KJ et al (2016) Comparison of the proteome of adult and cord erythroid cells, and changes in the proteome following reticulocyte maturation. Mol Cell Proteomics. doi:10.1074/mcp.M115.057315

    PubMed Central  Google Scholar 

  16. D’Alessandro A, Righetti PG, Zolla L (2010) The red blood cell proteome and interactome: an update. J Proteome Res 9:144–163

    Article  PubMed  Google Scholar 

  17. Burkhart JM, Vaudel M, Gambaryan S et al (2012) The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 120:e73–e82

    Article  CAS  PubMed  Google Scholar 

  18. Cristea IM, Gaskell SJ, Whetton AD (2004) Proteomics techniques and their application to hematology. Blood 103:3624–3634

    Article  CAS  PubMed  Google Scholar 

  19. Lea P, Keystone E, Mudumba S et al (2011) Advantages of multiplex proteomics in clinical immunology: the case of rheumatoid arthritis: novel IgXPLEX™: planar microarray diagnosis. Clin Rev Allergy Immunol 41:20–35

    Article  CAS  PubMed  Google Scholar 

  20. D’Alessandro A, Liumbruno G, Grazzini G et al (2010) Umbilical cord blood stem cells: towards a proteomic approach. J Proteomics 73:468–482

    Article  PubMed  Google Scholar 

  21. Liumbruno G, D’Alessandro A, Grazzini G et al (2010) How has proteomics informed transfusion biology so far? Crit Rev Oncol Hematol 76:153–172

    Article  PubMed  Google Scholar 

  22. D’Alessandro A, Kriebardis AG, Rinalducci S et al (2015) An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion 55:205–219

    Article  PubMed  Google Scholar 

  23. Goodman SR, Kurdia A, Ammann L et al (2007) The human red blood cell proteome and interactome. Exp Biol Med Maywood NJ 232:1391–1408

    Article  CAS  Google Scholar 

  24. Guest PC, Guest FL, Martins-de Souza D (2015) Making sense of blood-based proteomics and metabolomics in psychiatric research. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP. doi:10.1093/ijnp/pyv138

    Google Scholar 

  25. Macaulay IC, Carr P, Gusnanto A et al (2005) Platelet genomics and proteomics in human health and disease. J Clin Invest 115:3370–3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Geyer PE, Kulak NA, Pichler G (2016) Plasma proteome profiling to assess human health and disease. Cell Syst 2:185–195

    Article  CAS  PubMed  Google Scholar 

  27. Liotta LA, Ferrari M, Petricoin E (2003) Clinical proteomics: written in blood. Nature 425:905

    Article  CAS  PubMed  Google Scholar 

  28. Bosman GJCGM (2016) The involvement of erythrocyte metabolism in organismal homeostasis in health and disease. Proteomics Clin Appl. doi:10.1002/prca.201500129

    PubMed  Google Scholar 

  29. D’Alessandro A, Dzieciatkowska M, Hill RC et al (2016) Supernatant protein biomarkers of red blood cell storage hemolysis as determined through an absolute quantification proteomics technology. Transfusion. doi:10.1111/trf.13483

    Google Scholar 

  30. Dzieciatkowska M, D’Alessandro A et al (2015) Plasma QconCATs reveal a gender-specific proteomic signature in apheresis platelet plasma supernatants. J Proteomics 120:1–6

    Article  CAS  PubMed  Google Scholar 

  31. Baez NOD, Reisz JA, Furdui CM (2015) Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats. Free Radic Biol Med 80:191–211

    Article  PubMed  Google Scholar 

  32. Wood ST, Long DL, Reisz JA et al (2016) Cysteine-mediated redox regulation of cell signaling in chondrocytes stimulated with fibronectin fragments. Arthritis Rheumatol Hoboken NJ 68:117–126

    Article  CAS  Google Scholar 

  33. Wither M, Dzieciatkowska M, Nemkov T et al (2016) Hemoglobin oxidation at functional amino acid residues during routine storage of red blood cells. Transfusion 56:421–426

    Article  CAS  PubMed  Google Scholar 

  34. Julian CG, Subudhi AW et al (2014) Exploratory proteomic analysis of hypobaric hypoxia and acute mountain sickness in humans. J Appl Physiol (1985) 116:937–944

    Article  Google Scholar 

  35. Vosseller K, Hansen KC, Chalkley RJ et al (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 5:388–398

    Article  CAS  PubMed  Google Scholar 

  36. Hill RC, Calle EA, Dzieciatkowska M et al (2015) Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Mol Cell Proteomics 14:961–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brownridge PJ, Harman VM, Simpson DM et al (2012) Absolute multiplexed protein quantification using QconCAT technology. Methods Mol Biol Clifton 893:267–293

    Article  CAS  Google Scholar 

  38. Johnson TD, Hill RC, Dzieciatkowska M et al (2016) Quantification of decellularized human myocardial matrix: a comparison of six patients. Proteomics Clin Appl 10:75–83

    Article  CAS  PubMed  Google Scholar 

  39. Pratt JM, Simpson DM, Doherty MK et al (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1:1029–1043

    Article  CAS  PubMed  Google Scholar 

  40. Boja ES, Rodriguez H (2012) Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins. Proteomics 12:1093–1110

    Article  CAS  PubMed  Google Scholar 

  41. Aebersold R (2003) Quantitative proteome analysis: methods and applications. J Infect Dis 187:S315–S320

    Article  CAS  PubMed  Google Scholar 

  42. Geiger T, Wisniewski JR, Cox J et al (2011) Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat Protoc 6:147–157

    Article  CAS  PubMed  Google Scholar 

  43. KrĂ¼ger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Article  PubMed  Google Scholar 

  44. Dzieciatkowska M, D’Alessandro A, Moore EE et al (2014) Lymph is not a plasma ultrafiltrate: a proteomic analysis of injured patients. Shock 42:485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Doerr A (2015) DIA mass spectrometry. Nat Methods 12:35–35. doi:10.1038/nmeth.3234

    Article  CAS  Google Scholar 

  46. Egertson JD, Kuehn A, Merrihew GE et al (2013) Multiplexed MS/MS for improved data-independent acquisition. Nat Methods 10:744–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Holstein Sherwood CA, Gafken PR et al (2011) Collision energy optimization of b- and y-ions for multiple reaction monitoring mass spectrometry. J Proteome Res 10:231–240

    Article  PubMed  Google Scholar 

  49. WĂ¼hr M, Haas W, McAlister GC et al (2012) Accurate multiplexed proteomics at the MS2 level using the complement reporter ion cluster. Anal Chem 84:9214–9221

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dzieciatkowska M, D’Alessandro A, Burke TA et al (2015) Proteomics of apheresis platelet supernatants during routine storage: Gender-related differences. J Proteomics 112:190–209

    Article  CAS  PubMed  Google Scholar 

  51. Wiśniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  PubMed  Google Scholar 

  52. MacCoss MJ, Wu CC, Matthews DE et al (2005) Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides. Anal Chem 77:7646–7653

    Article  CAS  PubMed  Google Scholar 

  53. Dzieciatkowska M, Hill R, Hansen KC (2014) GeLC-MS/MS analysis of complex protein mixtures. Methods Mol Biol Clifton 1156:53–66

    Article  CAS  Google Scholar 

  54. Herbert B, Hopwood F, Oxley D et al (2003) Beta-elimination: an unexpected artefact in proteome analysis. Proteomics 3:826–831

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

A.D. received funds from the National Blood Foundation. Though unrelated to the contents of the manuscript, the authors disclose that A.D. and K.C.H. are part of Endura LLC, and A.D. is a consultant for New Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo D’Alessandro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Reisz, J.A., Chessler, K.M., Dzieciatkowska, M., D’Alessandro, A., Hansen, K.C. (2017). Blood and Plasma Proteomics: Targeted Quantitation and Posttranslational Redox Modifications. In: Greening, D., Simpson, R. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 1619. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7057-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7057-5_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7056-8

  • Online ISBN: 978-1-4939-7057-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics