Skip to main content

Bioinformatics Meets Biomedicine: OncoFinder, a Quantitative Approach for Interrogating Molecular Pathways Using Gene Expression Data

  • Protocol
  • First Online:
Biological Networks and Pathway Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1613))

Abstract

We propose a biomathematical approach termed OncoFinder (OF) that enables performing both quantitative and qualitative analyses of the intracellular molecular pathway activation. OF utilizes an algorithm that distinguishes the activator/repressor role of every gene product in a pathway. This method is applicable for the analysis of any physiological, stress, malignancy, and other conditions at the molecular level. OF showed a strong potential to neutralize background-caused differences between experimental gene expression data obtained using NGS, microarray and modern proteomics techniques. Importantly, in most cases, pathway activation signatures were better markers of cancer progression compared to the individual gene products. OF also enables correlating pathway activation with the success of anticancer therapy for individual patients. We further expanded this approach to analyze impact of micro RNAs (miRs) on the regulation of cellular interactome. Many alternative sources provide information about miRs and their targets. However, instruments elucidating higher level impact of the established total miR profiles are still largely missing. A variant of OncoFinder termed MiRImpact enables linking miR expression data with its estimated outcome on the regulation of molecular processes, such as signaling, metabolic, cytoskeleton, and DNA repair pathways. MiRImpact was used to establish cancer-specific and cytomegaloviral infection-linked interactomic signatures for hundreds of molecular pathways. Interestingly, the impact of miRs appeared orthogonal to pathway regulation at the mRNA level, which stresses the importance of combining all available levels of gene regulation to build a more objective molecular model of cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blagosklonny MV (2013) MTOR-driven quasi-programmed aging as a disposable soma theory: blind watchmaker vs. intelligent designer. Cell Cycle 12:1842–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Demidenko ZN, Blagosklonny MV (2011) The purpose of the HIF-1/PHD feedback loop: to limit mTOR-induced HIF-1α. Cell Cycle 10:1557–1562

    Article  CAS  PubMed  Google Scholar 

  3. Blagosklonny MV (2011) The power of chemotherapeutic engineering: arresting cell cycle and suppressing senescence to protect from mitotic inhibitors. Cell Cycle 10:2295–2298

    Article  CAS  PubMed  Google Scholar 

  4. UniProt Consortium (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39:D214–B219

    Article  Google Scholar 

  5. Mathivanan S, Periaswamy B, Gandhi T, Kandasamy K et al (2006) An evaluation of human protein-protein interaction data in the public domain. BMC Bioinformatics 7:S19

    Article  PubMed Central  Google Scholar 

  6. Pathway central, a Qiagen portal. https://www.qiagen.com/ro/shop/genes-and-pathways/pathway-central/. Accessed 15 Mar 2016

  7. Bauer-Mehren A, Furlong LI, Sanz F (2009) Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol Syst Biol 5:290

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 19:2155–2157

    Article  CAS  PubMed  Google Scholar 

  9. Elkon R, Vesterman R, Amit N (2008) SPIKE—a database, visualization and analysis tool of cellular signaling pathways. BMC Bioinformatics 9:110

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haw R, Stein L (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477

    Article  Google Scholar 

  11. Nakaya A, Katayama T, Itoh M, Hiranuka K et al (2013) KEGG OC: a large-scale automatic construction of taxonomy-based ortholog clusters. Nucleic Acids Res 41:D353–D357

    Article  CAS  Google Scholar 

  12. HumanCyc: encyclopedia of human genes and metabolism. http://www.humancyc.org/. Accessed 15 Mar 2016

  13. Vivar JC, Pemu P, McPherson R, Ghosh S (2013) Redundancy control in pathway databases (ReCiPa): an application for improving gene-set enrichment analysis in Omics studies and “Big data” biology. OMICS 17:414–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eikrem O, Beisland C, Hjelle K, Flatberg A et al (2016) Transcriptome sequencing (RNAseq) enables utilization of formalin-fixed, paraffin-embedded biopsies with clear cell renal cell carcinoma for exploration of disease biology and biomarker development. PLoS One 11:e0149743

    Article  PubMed  PubMed Central  Google Scholar 

  15. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8:e1002375

    Article  CAS  PubMed Central  Google Scholar 

  16. Khatri P, Drăghici S (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21:3587–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khatri P, Draghici S, Ostermeier GC, Krawetz SA (2002) Profiling gene expression using onto-express. Genomics 79:266–270

    Article  CAS  PubMed  Google Scholar 

  18. Zeeberg BR, Feng W, Wang G, Wang MD et al (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4:R28

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barry WT, Nobel AB, Wright FA (2005) Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics 21:1943–1949

    Article  CAS  PubMed  Google Scholar 

  20. Subramanian A, Tamayo P, Mootha VK, Mukherjee S et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian L, Greenberg SA, Kong SW, Altschuler J et al (2005) Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci USA 102:13544–13549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S et al (2013) Methods and approaches in the topology-based analysis of biological pathways. Front Physiol 4:278

    Article  PubMed  PubMed Central  Google Scholar 

  23. Afsari B, Geman D, Fertig EJ (2014) Learning dysregulated pathways in cancers from differential variability analysis. Cancer Inform 13(Suppl 5):61–67

    PubMed  PubMed Central  Google Scholar 

  24. Ho JW, Stefani M, dos Remedios CG, Charleston MA (2008) Differential variability analysis of gene expression and its application to human diseases. Bioinformatics 24:i390–i398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eddy JA, Hood L, Price ND, Geman D (2010) Identifying tightly regulated and variably expressed networks by Differential Rank Conservation (DIRAC). PLoS Comput Biol 6:e1000792

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang J, Li J, Deng HW (2009) Identifying gene interaction enrichment for gene expression data. PLoS One 4:e8064

    Article  PubMed  PubMed Central  Google Scholar 

  27. Buzdin AA, Zhavoronkov AA, Korzinkin MB et al (2014) OncoFinder, a new method for the analysis of intracellular signaling pathway activation using transcriptomic data. Front Genet 5:55

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buzdin AA, Zhavoronkov AA, Korzinkin MB et al (2014) The OncoFinder algorithm for minimizing the errors introduced by the high-throughput methods of transcriptome analysis. Front Mol Biosci 1:8

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lezhnina K, Kovalchuk O, Zhavoronkov AA, Korzinkin MB et al (2014) Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways. Oncotarget 5:9022–9032

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aliper AM, Frieden-Korovkina VP, Buzdin A et al (2014) Interactome analysis of myeloid-derived suppressor cells in murine models of colon and breast cancer. Oncotarget 5:11345–11353

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aliper AM, Csoka AB, Buzdin A, Jetka T et al (2015) Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells. Aging (Albany NY) 7:26–37

    Article  Google Scholar 

  32. Makarev E, Cantor C, Zhavoronkov A, Buzdin A et al (2014) Pathway activation profiling reveals new insights into age-related macular degeneration and provides avenues for therapeutic interventions. Aging (Albany NY) 6:1064–1075

    Article  Google Scholar 

  33. Alexandrova E, Nassa G, Corleone G, Buzdin A et al (2016) Large-scale profiling of signalling pathways reveals an asthma specific signature in bronchial smooth muscle cells. Oncotarget 7(18):25150–25161. [Epub ahead of print]

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shepelin D, Korzinkin M, Vanyushina A, Aliper A et al (2016) Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human. Oncotarget 7:656–670

    Article  PubMed  Google Scholar 

  35. Lebedev TD, Spirin PV, Suntsova MV, Ivanova AV et al (2015) Receptor tyrosine kinase KIT may regulate expression of genes involved in spontaneous regression of neuroblastoma. Mol Biol (Mosk) 49:1052–1055

    CAS  Google Scholar 

  36. Ram DR, Ilyukha V, Volkova T, Buzdin A et al (2016) Balance between short and long isoforms of cFLIP regulates Fas-mediated apoptosis in vivo. Proc Natl Acad Sci USA 113:1606–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vishniakova KS, Babizhaev MA, Aliper AM, Buzdin AA et al (2014) Stimulation of proliferation by carnosine: cellular and transcriptome approaches. Mol Biol 48:824–833

    Google Scholar 

  38. Spirin PV, Lebedev TD, Orlova NN, Gornostaeva AS (2014) Silencing AML1-ETO gene expression leads to simultaneous activation of both pro-apoptotic and proliferation signaling. Leukemia 28(11):2222–2228

    Article  CAS  PubMed  Google Scholar 

  39. Artcibasova AV, Korzinkin MB, Sorokin MI, Shegay PV et al (2016) MiRImpact, a new bioinformatic method using complete microRNA expression profiles to assess their overall influence on the activity of intracellular molecular pathways. Cell Cycle 15(5):689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Venkova LS, Aliper AM, Suntsova M, Kholodenko R et al (2015) Combinatorial high-throughput experimental and bioinformatics approach identifies molecular pathways linked with the sensitivity to anticancer target drugs. Oncotarget 6:27227–27238

    Article  PubMed  PubMed Central  Google Scholar 

  41. Artemov A, Aliper A, Korzinkin M, Lezhnina K et al (2015) A method for predicting target drug efficiency in cancer based on the analysis of signaling pathway activation. Oncotarget 6:29347–29356

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhu Q, Izumchenko E, Aliper AM, Makarev E (2015) Pathway activation strength is a novel independent prognostic biomarker for cetuximab sensitivity in colorectal cancer patients. Hum Genome Var 2:15009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  Google Scholar 

  44. Hsu SD, Tseng YT, Shrestha S, Lin YL et al (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42:D78–D85

    Article  CAS  PubMed  Google Scholar 

  45. Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G et al (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229

    Article  CAS  PubMed  Google Scholar 

  46. Keshaviah A, Dellapasqua S, Rotmensz N, Lindtner J et al (2007) CA15-3 and alkaline phosphatase as predictors for breast cancer recurrence: a combined analysis of seven International Breast Cancer Study Group trials. Ann Oncol 18:701–708

    Article  CAS  PubMed  Google Scholar 

  47. Blagosklonny MV (2012) Common drugs and treatments for cancer and age-related diseases: revitalizing answers to NCI’s provocative questions. Oncotarget 3:1711–1724

    Article  PubMed  PubMed Central  Google Scholar 

  48. Borisov NM, Terekhanova NV, Aliper SM, Venkova LS et al (2014) Signaling pathways activation profiles make better markers of cancer than expression of individual genes. Oncotarget 5:10198–10205

    Article  PubMed  PubMed Central  Google Scholar 

  49. Swets JA, Green DM, Getty DJ, Swets JB (1978) Signal detection and identification at successive stages of observation. Percept Psychophys 23:275–289

    Article  CAS  Google Scholar 

  50. Boyd JC (1997) Mathematical tools for demonstrating the clinical usefulness of biochemical markers. Scand J Clin Lab Invest Suppl 227:46–63

    Article  CAS  PubMed  Google Scholar 

  51. Munshi A, Ramesh R (2013) Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 4:401–408

    Article  PubMed  PubMed Central  Google Scholar 

  52. Morgenroth A, Vogg AT, Ermert K et al (2014) Hedgehog signaling sensitizes glioma stem cells to endogenous nano-irradiation. Oncotarget 5:5483–5493

    Article  PubMed  PubMed Central  Google Scholar 

  53. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  54. Ploeg M, Aben KK, Kiemeney LA (2009) The present and future burden of urinary bladder cancer in the world. World J Urol 27:289–293

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zabolotneva AA, Zhavoronkov AA, Shegay PV, Gaifullin NM (2013) A systematic experimental evaluation of microRNA markers of human bladder cancer. Front Genet 4:247

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jerant AF, Johnson JT, Sheridan CD, Caffrey TJ (2000) Early detection and treatment of skin cancer. Am Fam Physician 62:357–368, 375–376, 381–382

    Google Scholar 

  57. El Ghissassi F, Baan R, Straif K, Grosse Y (2009) A review of human carcinogens—part D: radiation. Lancet Oncol 10:751–752

    Article  PubMed  Google Scholar 

  58. Halachmi S, Gilchrest BA (2001) Update on genetic events in the pathogenesis of melanoma. Curr Opin Oncol 13:129–136

    Article  CAS  Google Scholar 

  59. Davies MA, Samuels Y (2010) Analysis of the genome to personalize therapy for melanoma. Oncogene 29:5545–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Elder D (1999) Tumor progression, early diagnosis and prognosis of melanoma. Acta Oncol 38:535–547

    Article  CAS  PubMed  Google Scholar 

  61. Hanna N, Einhorn LH (2014) Testicular cancer: a reflection on 50 years of discovery. J Clin Oncol 32:3085–3092

    Article  CAS  PubMed  Google Scholar 

  62. Svensson L, Finlay BB, Bass D et al (1991) Symmetric infection of rotavirus on polarized human intestinal epithelial (Caco-2) cells. J Virol 65:4190–4197

    CAS  PubMed Central  Google Scholar 

  63. Zhukov NV, Tjulandin SA (2008) Targeted therapy in the treatment of solid tumors: practice contradicts theory. Biochemistry 73:605–618

    CAS  PubMed  Google Scholar 

  64. Sawyers C (2004) Targeted cancer therapy. Nature 432:294–297

    Article  CAS  PubMed  Google Scholar 

  65. Nahta R, Esteva FJ (2007) Trastuzumab: triumphs and tribulations. Oncogene 26:3637–3643

    Article  CAS  PubMed  Google Scholar 

  66. Onitilo AA, Engel JM, Greenlee RT, Mukesh BN (2009) Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res 7:4–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chapman PB, Hauschild A, Robert C, Haanen JB et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Prieto PA, Yang JC, Sherry RM, Hughes MS (2012) CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res 18:2039–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gridelli C, De Marinis F, Di Maio M, Cortinovis D et al (2011) Gefitinib as first-line treatment for patients with advanced non-small-cell lung cancer with activating epidermal growth factor receptor mutation: review of the evidence. Lung Cancer 71:249–257

    Article  CAS  PubMed  Google Scholar 

  70. Grothey A, Lenz HJ (2012) Explaining the unexplainable: EGFR antibodies in colorectal cancer. J Clin Oncol 30:1735–1737

    Article  CAS  PubMed  Google Scholar 

  71. Yang W, Soares J, Greninger P, Edelman EJ et al (2013) Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:D955–D956

    Article  CAS  Google Scholar 

  72. GEO Profiles, a National Center of Biotechnology Information database. http://www.ncbi.nlm.nih.gov/geo/. Accessed 16 Mar 2016

  73. Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation grant no. 14-14-01089 (for V.Prassolov and Anton Buzdin), by the Pathway Pharmaceuticals (Hong-Kong) and First Oncology Research and Advisory Center (Russia) Joint Research Initiative and by the Program of the Presidium of the Russian Academy of Sciences “Dynamics and Conservation of Genomes” (for Nikolay Borisov and Alex Zhavoronkov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Buzdin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Buzdin, A.A., Prassolov, V., Zhavoronkov, A.A., Borisov, N.M. (2017). Bioinformatics Meets Biomedicine: OncoFinder, a Quantitative Approach for Interrogating Molecular Pathways Using Gene Expression Data. In: Tatarinova, T., Nikolsky, Y. (eds) Biological Networks and Pathway Analysis. Methods in Molecular Biology, vol 1613. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7027-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7027-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7025-4

  • Online ISBN: 978-1-4939-7027-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics