Skip to main content

Mapping Protein–Protein Interactions Using Affinity Purification and Mass Spectrometry

  • Protocol
  • First Online:
Plant Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1610))

Abstract

The mapping of protein–protein interaction (PPI) networks and their dynamics are crucial steps to deciphering the function of a protein and its role in cellular pathways, making it critical to have comprehensive knowledge of a protein’s interactome. Advances in affinity purification and mass spectrometry technology (AP-MS) have provided a powerful and unbiased method to capture higher-order protein complexes and decipher dynamic PPIs. However, the unbiased calling of nonspecific interactions and the ability to detect transient interactions remains challenging when using AP-MS, thereby hampering the detection of biologically meaningful complexes. Additionally, there are plant-specific challenges with AP-MS, such as a lack of protein-specific antibodies, which must be overcome to successfully identify PPIs. Here we discuss and describe a protocol designed to bypass the traditional challenges of AP-MS and provide a roadmap to identify bona fide PPIs in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zhang Y, Gao P, Yuan JS (2010) Plant protein–protein interaction network and interactome. Curr Genomics 11:40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dietz KJ, Jacquot JP, Harris G (2010) Hubs and bottlenecks in plant molecular signalling networks. New Phytol 188:919–938

    Article  CAS  PubMed  Google Scholar 

  3. Bensimon A, Heck AJR, Aebersold R (2012) Mass spectrometry–based proteomics and network biology. Annu Rev Biochem 81:379–405

    Article  CAS  PubMed  Google Scholar 

  4. Chen J, Sawyer N, Regan L (2013) Protein–protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area. Protein Sci 22:510–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. LaCava J et al (2015) Affinity proteomics to study endogenous protein complexes: pointers, pitfalls, preferences and perspectives. Biotechniques 58:103–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perkins JR et al (2010) Transient protein–protein interactions: structural, functional, and network properties. Structure 18:1233–1243

    Article  CAS  PubMed  Google Scholar 

  7. Morris JH et al (2014) Affinity purification-mass spectrometry and network analysis to understand protein–protein interactions. Nat Protoc 9:2539–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Snider J et al (2015) Fundamentals of protein interaction network mapping. Mol Syst Biol 11:848

    Article  PubMed  PubMed Central  Google Scholar 

  9. Uzoma I, Zhu H (2013) Interactome mapping: using protein microarray technology to reconstruct diverse protein networks. Genomics Proteomics Bioinformatics 11:18–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walhout AJM et al (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122

    Article  CAS  PubMed  Google Scholar 

  11. Snider J et al (2010) Detecting interactions with membrane proteins using a membrane two-hybrid assay in yeast. Nat Protoc 5:1281–1293

    Article  CAS  PubMed  Google Scholar 

  12. Miernyk JA, Thelen JJ (2008) Biochemical approaches for discovering protein–protein interactions. Plant J 53:597–609

    Article  CAS  PubMed  Google Scholar 

  13. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohad N, Shichrur K, Yalovsky S (2007) The analysis of protein–protein interactions in plants by bimolecular fluorescence complementation. Plant Physiol 145:1090–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Truong K, Ikura M (2001) The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol 11:573–578

    Article  CAS  PubMed  Google Scholar 

  16. Dedecker M, Van Leene J, De Jaeger G (2015) Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry. Curr Opin Plant Biol 24:1–9

    Article  CAS  PubMed  Google Scholar 

  17. Daneri-Castro SN, Svensson B, Roberts TH (2016) Barley germination: spatio-temporal considerations for designing and interpreting ‘omics’ experiments. J Cereal Sci 70:29–37

    Article  CAS  Google Scholar 

  18. Nikolov M et al (2011) Chromatin affinity purification and quantitative mass spectrometry defining the interactome of histone modification patterns. Mol Cell Proteomics 10(M110):005371

    PubMed  Google Scholar 

  19. Qu M et al (2016) Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry. Mass Spectrom Rev. doi:10.1002/mas.21500

    PubMed  Google Scholar 

  20. Nielsen ML, Savitski MM, Zubarev RA (2005) Improving protein identification using complementary fragmentation techniques in fourier transform mass spectrometry. Mol Cell Proteomics 4:835–845

    Article  CAS  PubMed  Google Scholar 

  21. Kim S et al (2010) The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search. Mol Cell Proteomics 9:2840–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Armean IM, Lilley KS, Trotter MWB (2013) Popular computational methods to assess multiprotein complexes derived from label-free affinity purification and mass spectrometry (AP-MS) experiments. Mol Cell Proteomics 12:1–13

    Article  PubMed  Google Scholar 

  23. Piehowski PD et al (2013) STEPS: a grid search methodology for optimized peptide identification filtering of MS/MS database search results. Proteomics 13:766–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu H, Freitas MA (2009) MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data. Proteomics 9:1548–1555

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  26. Van Leene J et al (2015) An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nat Protoc 10:169–187

    Article  PubMed  Google Scholar 

  27. Gingras AC et al (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8:645–654

    Article  CAS  PubMed  Google Scholar 

  28. Banks CA et al (2015) Proteins interacting with cloning scars: a source of false positive protein–protein interactions. Sci Rep 5:8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu J et al (2006) Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 281:11002–11010

    Article  CAS  PubMed  Google Scholar 

  30. DeBlasio SL et al (2016) Visualization of host-polerovirus interaction topologies using protein interaction reporter technology. J Virol 90:1973–1987

    Article  CAS  PubMed Central  Google Scholar 

  31. Westphal K et al (2012) A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in Escherichia coli. J Biol Chem 287:42962–42971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yumimoto K et al (2012) Comprehensive identification of substrates for F-box proteins by differential proteomics analysis. J Proteome Res 11:3175–3185

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez J et al (2016) Substrate-trapped interactors of PHD3 and FIH cluster in distinct signaling pathways. Cell Rep 14:2745–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leitner A et al (2014) Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proc Natl Acad Sci U S A 111:9455–9460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keilhauer EC, Hein MY, Mann M (2015) Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol Cell Proteomics 14:120–135

    Article  CAS  PubMed  Google Scholar 

  36. Huang H et al (2016) Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. Mol Cell Proteomics 15:201–217

    Article  CAS  PubMed  Google Scholar 

  37. Huang H et al (2016) PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis. Elife 5:e13292

    PubMed  PubMed Central  Google Scholar 

  38. Sowa ME et al (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nesvizhskii AI (2012) Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments. Proteomics 12:1639–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mellacheruvu D et al (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10:730–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rees JS, Lilley KS, Jackson AP (2015) SILAC-iPAC: a quantitative method for distinguishing genuine from non-specific components of protein complexes by parallel affinity capture. J Proteomics 115:143–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tamura K et al (2010) Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cell 22:4084–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi H et al (2014) The homeodomain-leucine zipper ATHB23, a phytochrome B-interacting protein, is important for phytochrome B-mediated red light signaling. Physiol Plant 150:308–320

    Article  CAS  PubMed  Google Scholar 

  44. Book AJ et al (2010) Affinity purification of the Arabidopsis 26 S proteasome reveals a diverse array of plant proteolytic complexes. J Biol Chem 285:25554–25569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li S et al (2014) Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata. Plant Reprod 27:31–45

    Article  PubMed  Google Scholar 

  46. Lackner DH et al (2015) A generic strategy for CRISPR-Cas9-mediated gene tagging. Nat Commun 6:10237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kotlyar M et al (2015) Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 44(D1):D536–D541

    Article  PubMed  PubMed Central  Google Scholar 

  48. Barshir R et al (2012) The TissueNet database of human tissue protein–protein interactions. Nucleic Acids Res 41(D1):D841–D844

    Article  PubMed  PubMed Central  Google Scholar 

  49. Song YH et al (2014) Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci U S A 111:17672–17677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rohila JS et al (2006) Protein–protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46:1–13

    Article  CAS  PubMed  Google Scholar 

  51. Ueda EK et al (2003) Current and prospective applications of metal ion-protein binding. J Chromatogr A 988:1–23

    Article  CAS  PubMed  Google Scholar 

  52. Pitt JJ (2009) Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev 30:19–34

    PubMed  PubMed Central  Google Scholar 

  53. Tyanova S et al (2015) Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics 15:1453–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Perkins DN et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  55. Goldfarb D et al (2014) Spotlite: web application and augmented algorithms for predicting co-complexed proteins from affinity purification—mass spectrometry data. J Proteome Res 13:5944–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guruharsha KG et al (2011) A protein complex network of Drosophila melanogaster. Cell 147:690–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Choi H et al (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 8:70–73

    Article  CAS  PubMed  Google Scholar 

  58. Teo G et al (2014) SAINTexpress: improvements and additional features in significance analysis of INTeractome software. J Proteomics 100:37

    Article  CAS  PubMed  Google Scholar 

  59. Blancher C, Jones A (2001) Analysis of cells and tissues. In: Brooks SA, Schumacher U (eds) Metastasis research protocols, vol 1. Humana Press, Totowa, NJ, pp 145–162

    Chapter  Google Scholar 

  60. Dunn MJ (2002) Detection of proteins in polyacrylamide gels by silver staining. In: Walker JM (ed) The protein protocols handbook. Humana Press, Totowa, NJ, pp 265–271

    Chapter  Google Scholar 

Download references

Acknowledgments

D. A. N. provided the pB7-HFN binary vector used for generating transgenic lines expressing 3XFLAG-6XHis-tagged bait proteins. The trypsin digestion, sample preparation for mass spectrometry, and MASCOT analysis were technically supported by Dr. Jean Kanyo at the W. M. Keck Biotechnology Resource Laboratory at Yale University. We also want to thank Dr. Shirin Bahmanyar, Dr. Man-Wah Li, Dr. Wei Liu, and Olivia Compagna for their useful discussion and comments. This research is supported by NSF (IOS-1456796 to D. A. N. and IOS-1548538 to J. M. G. and DGE-1122492 to AMF), NIH (T32 GM007499 to A.F.), the Gruber Foundataion (A.F.), Yale University Forest B. H. and Elizabeth D. W. Brown Fund Endowed Postdoctoral Fellowship (C.L.) and the Rudolph J. Anderson Postdoctoral Fellowship (C.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Gendron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lee, CM., Adamchek, C., Feke, A., Nusinow, D.A., Gendron, J.M. (2017). Mapping Protein–Protein Interactions Using Affinity Purification and Mass Spectrometry. In: Busch, W. (eds) Plant Genomics. Methods in Molecular Biology, vol 1610. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7003-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7003-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7001-8

  • Online ISBN: 978-1-4939-7003-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics