Skip to main content

Advanced Methods of Protein Crystallization

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

This chapter provides a review of different advanced methods that help to increase the success rate of a crystallization project, by producing larger and higher quality single crystals for determination of macromolecular structures by crystallographic methods. For this purpose, the chapter is divided into three parts. The first part deals with the fundamentals for understanding the crystallization process through different strategies based on physical and chemical approaches. The second part presents new approaches involved in more sophisticated methods not only for growing protein crystals but also for controlling the size and orientation of crystals through utilization of electromagnetic fields and other advanced techniques. The last section deals with three different aspects: the importance of microgravity, the use of ligands to stabilize proteins, and the use of microfluidics to obtain protein crystals. All these advanced methods will allow the readers to obtain suitable crystalline samples for high-resolution X-ray and neutron crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giege R, Sauter S (2010) Biocrystallography: past, present, future. HFSP J 4:109–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baranovsky AG, Matushin VG, Vlassov AV et al (1997) DNA- and RNA-hydrolyzing antibodies from the blood of patients with various forms of viral hepatitis. Biochemistry (Moscow) 62:1358–1366

    CAS  Google Scholar 

  3. Viadiu H (2008) Molecular architecture of tumor suppressor p53. Curr Top Med Chem 8:1327–1334

    Article  CAS  PubMed  Google Scholar 

  4. Ciribilli Y, Monti P, Bisio A et al (2013) Transactivation specificity is conserved among p53 family proteins and depends on a response element sequence code. Nucl Acids Res 41:8637–8653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baxter EL, Aguila R, Alonso-Mori R et al (2016) High-density grids for efficient data collection from multiple crystals. Acta Crystallogr D Biol Crystallogr 72:2–11

    Article  CAS  Google Scholar 

  6. Cohen AE, Soltis SM, Gonzalez A et al (2014) Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proc Natl Acad Sci U S A 111:17122–17127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giege R (2013) A historical perspective on protein crystallization from 1840 to the present day. FEBS J 280:6456–6497

    Article  CAS  PubMed  Google Scholar 

  8. Sanchez-Puig N, Sauter C, Lorber B et al (2012) Predicting protein crystallizability and nucleation. Protein Peptide Lett 19:725–731

    Article  CAS  Google Scholar 

  9. Thygesen J, Krumbholz S, Levin I et al (1996) Ribosomal crystallography: from crystal growth to initial phasing. J Cryst Growth 168:308–323

    Article  CAS  Google Scholar 

  10. Berkovitch-Yellin Z, Hansen HAS, Bennett WS et al (1991) Crystals of 70s ribosomes from thermophilic bacteria are suitable for X-ray-analysis at low resolution. J Cryst Growth 110:208–213

    Article  CAS  Google Scholar 

  11. Saridakis E, Chayen NE (2003) Systematic improvement of protein crystals by determining the supersolubility curves of phase diagrams. Biophys J 84:1218–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moretti JJ, Sandler SI, Lenhoff AM (2000) Phase equilibria in the lysozyme-ammonium sulfate-water system. Biotechnol Bioeng 70:498–506

    Article  CAS  PubMed  Google Scholar 

  13. Chang J, Lenhoff AM, Sandler SI (2004) Determination of fluid-solid transitions in model protein solutions using the histogram reweighting method and expanded ensemble simulations. J Chem Phys 120:3003–3014

    Article  CAS  PubMed  Google Scholar 

  14. Chayen NE, Saridakis E, Sear RP (2006) Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. Proc Natl Acad Sci U S A 103:597–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blow DM, Chayen NE, Lloyd LF et al (1994) Control of nucleation of protein crystals. Protein Sci 3:1638–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vekilov PG (2010) Nucleation. Cryst Growth Des 10:5007–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang S, Wen X, Golen JA et al (2013) Antifreeze protein-induced selective crystallization of a new thermodynamically and kinetically less preferred molecular crystal. Chem Eur J 19:16104–16112

    Article  CAS  PubMed  Google Scholar 

  18. Saridakis E, Chayen NE (2000) Improving protein crystal quality by decoupling nucleation and growth in vapor diffusion. Protein Sci 9:755–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Penkova A, Chayen N, Saridakis E et al (2002) Nucleation of protein crystals in a wide continuous supersaturation gradient. Acta Crystallogr D Biol Crystallogr 58:1606–1610

    Article  CAS  PubMed  Google Scholar 

  20. Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5:147–153

    Article  CAS  PubMed  Google Scholar 

  21. Dumetz AC, Chockla AM, Kaler EW et al (2009) Comparative effects of salt, organic, and polymer precipitants on protein phase behavior and implications for vapor diffusion. Cryst Growth Des 9:682–691

    Article  CAS  Google Scholar 

  22. Astier JP, Veesler S (2008) Using temperature to crystallize proteins: a mini-review. Cryst Growth Des 8:4215–4219

    Article  CAS  Google Scholar 

  23. Chayen NE, Stewart PDS, Blow DM (1992) Microbatch crystallization under oil—a new technique allowing many small-volume crystallization trials. J Cryst Growth 122:176–180

    Article  CAS  Google Scholar 

  24. Garcia-Ruiz JM, Moreno A (1994) Investigations on protein crystal-growth by the gel acupuncture method. Acta Crystallogr D Biol Crystallogr 50:484–490

    Article  CAS  PubMed  Google Scholar 

  25. Otalora F, Gavira JA, Ng JD et al (2009) Counterdiffusion methods applied to protein crystallization. Prog Biophys Mol Biol 101:26–37

    Article  CAS  PubMed  Google Scholar 

  26. Stura EA, Wilson IA (1991) Applications of the streak seeding technique in protein crystallization. J Cryst Growth 110:270–282

    Article  CAS  Google Scholar 

  27. Bergfors T (2003) Seeds to crystals. J Struct Biol 142:66–76

    Article  CAS  PubMed  Google Scholar 

  28. Obmolova G, Malia TJ, Teplyakov A et al (2014) Protein crystallization with microseed matrix screening: application to human germline antibody Fabs. Acta Crystallogr F Struct Biol Commun 70:1107–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malia TJ, Obmolova G, Luo J et al (2011) Crystallization of a challenging antigen-antibody complex: TLR3 ECD with three noncompeting Fabs. Acta Crystallogr F Struct Biol Commun 67:1290–1295

    Article  CAS  Google Scholar 

  30. Stewart PDS, Kolek SA, Briggs RA et al (2011) Random microseeding: a theoretical and practical exploration of seed stability and seeding techniques for successful protein crystallization. Cryst Growth Des 11:3432–3441

    Article  CAS  Google Scholar 

  31. Gavira JA, Hernandez-Hernandez MA, Gonzalez-Ramirez LA et al (2011) Combining counter-diffusion and microseeding to increase the success rate in protein crystallization. Cryst Growth Des 11:2122–2126

    Article  CAS  Google Scholar 

  32. D'Arcy A, Villard F, Marsh M (2007) An automated microseed matrix-screening method for protein crystallization. Acta Crystallogr D Biol Crystallogr 63:550–554

    Article  PubMed  CAS  Google Scholar 

  33. Saridakis E (2011) Novel genetic algorithm-inspired concept for macromolecular crystal optimization. Cryst Growth Des 11:2993–2998

    Article  CAS  Google Scholar 

  34. Saridakis E, Chayen NE (2009) Towards a ‘universal’ nucleant for protein crystallization. Trends Biotechnol 27:99–106

    Article  CAS  PubMed  Google Scholar 

  35. Khurshid S, Saridakis E, Govada L et al (2014) Porous nucleating agents for protein crystallization. Nature Protocols 9:1621–1633

    Article  CAS  PubMed  Google Scholar 

  36. Nanev CN, Penkova A (2001) Nucleation of lysozyme crystals under external electric and ultrasonic fields. J Cryst Growth 232:285–293

    Article  CAS  Google Scholar 

  37. Nanev CN, Penkova A (2002) Nucleation and growth of lysozyme crystals under external electric field. Colloids Surf A 209:139–145

    Article  CAS  Google Scholar 

  38. Penkova A, Gliko O, Dimitrov IL et al (2005) Enhancement and suppression of protein crystal nucleation due to electrically driven convection. J Cryst Growth 275:e1527–e1532

    Article  CAS  Google Scholar 

  39. Taleb M, Didierjean C, Jelsch C et al (1999) Crystallization of proteins under an external electric field. J Cryst Growth 200:575–582

    Article  CAS  Google Scholar 

  40. Taleb M, Didierjean C, Jelsch C et al (2001) Equilibrium kinetics of lysozyme crystallization under an external electric field. J Cryst Growth 232:250–255

    Article  CAS  Google Scholar 

  41. Mirkin N, Frontana-Uribe BA, Rodriguez-Romero A et al (2003) The influence of an internal electric field upon protein crystallization using the gel-acupuncture method. Acta Crystallogr D Biol Crystallogr 59:1533–1538

    Article  CAS  PubMed  Google Scholar 

  42. Flores-Hernandez E, Stojanoff V, Arreguin-Espinosa R et al (2013) An electrically assisted device for protein crystallization in a vapor-diffusion setup. J Appl Crystallogr 46:832–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. De la Mora E, Flores-Hernandez E, Jakoncic J et al (2015) SdsA polymorph isolation and improvement of their crystal quality using nonconventional crystallization techniques. J Appl Crystallogr 48:1551–1559

    Article  CAS  Google Scholar 

  44. Sazaki G, Yoshida E, Komatsu H et al (1997) Effects of a magnetic field on the nucleation and growth of protein crystals. J Cryst Growth 173:231–234

    Article  CAS  Google Scholar 

  45. Wakayama NI (2003) Effects of a strong magnetic field on protein crystal growth. Cryst Growth Des 3:17–24

    Article  CAS  Google Scholar 

  46. Yin DC (2015) Protein crystallization in a magnetic field. Prog Cryst Growth Charact Mater 61:1–26

    Article  CAS  Google Scholar 

  47. Veesler S, Ferte N, Costes MS et al (2004) Temperature and pH effect on the polymorphism of aprotinin (BPTI) in sodium bromide solutions. Cryst Growth Des 4:1137–1141

    Article  CAS  Google Scholar 

  48. Kadri A, Lorber B, Jenner G et al (2002) Effects of pressure on the crystallization and the solubility of proteins in agarose gel. J Cryst Growth 245:109–120

    Article  CAS  Google Scholar 

  49. Kadri A, Lorber B, Charron C et al (2005) Crystal quality and differential crystal-growth behaviour of three proteins crystallized in gel at high hydrostatic pressure. Acta Crystallogr D Biol Crystallogr 61:784–788

    Article  CAS  PubMed  Google Scholar 

  50. Lorber B, Jenner G, Giege R (1996) Effect of high hydrostatic pressure on nucleation and growth of protein crystals. J Cryst Growth 158:103–117

    Article  CAS  Google Scholar 

  51. Martinez-Caballero S, Cuellar-Cruz M, Demitri N et al (2016) Glucose isomerase polymorphs obtained using an ad hoc protein crystallization temperature device and a growth cell applying an electric field. Cryst Growth Des 16:1679–1686

    Article  CAS  Google Scholar 

  52. Candoni N, Grossier R, Hammadi Z et al (2012) Practical physics behind growing crystals of biological macromolecules. Protein Pept Lett 19:714–724

    Article  CAS  PubMed  Google Scholar 

  53. Heijna MCR, van Enckevort WJP, Vlieg E (2008) Growth inhibition of protein crystals: a study of lysozyme polymorphs. Cryst Growth Des 8:270–274

    Article  CAS  Google Scholar 

  54. Vera L, Antoni C, Devel L et al (2013) Screening using polymorphs for the crystallization of protein-ligand complexes. Cryst Growth Des 13:1878–1888

    Article  CAS  Google Scholar 

  55. Olson BJ, Markwell J (2007) Assays for determination of protein concentration. Curr Protoc Protein Sci 3:Unit 3.4

    Google Scholar 

  56. Gavira JA, Garcia-Ruiz JM (2002) Agarose as crystallisation media for proteins II: trapping of gel fibres into the crystals. Acta Crystallogr D Biol Crystallogr 58:1653–1656

    Article  PubMed  CAS  Google Scholar 

  57. Sauter C, Balg C, Moreno A et al (2009) Agarose gel facilitates enzyme crystal soaking with a ligand analog. J Appl Crystallogr 42:279–283

    Article  CAS  Google Scholar 

  58. Charron C, Robert MC, Capelle B et al (2002) X-ray diffraction properties of protein crystals prepared in agarose gel under hydrostatic pressure. J Cryst Growth 245:321–333

    Article  CAS  Google Scholar 

  59. Gonzalez-Ramirez LA, Caballero AG, Garcia-Ruiz JM (2008) Investigation of the compatibility of gels with precipitating agents and detergents in protein crystallization experiments. Cryst Growth Des 8:4291–4296

    Article  CAS  Google Scholar 

  60. Gavira JA, van Driessche AES, Garcia-Ruiz JM (2013) Growth of ultrastable protein-silica composite crystals. Cryst Growth Des 13:2522–2529

    Article  CAS  Google Scholar 

  61. Choquesillo-Lazarte D, Garcia-Ruiz JM (2011) Poly(ethylene) oxide for small-molecule crystal growth in gelled organic solvents. J Appl Crystallogr 44:172–176

    Article  CAS  Google Scholar 

  62. Pietras Z, Lin H-T, Surade S et al (2010) The use of novel organic gels and hydrogels in protein crystallization. J Appl Crystallogr 43:58–63

    Article  CAS  Google Scholar 

  63. Calero G, Cohen AE, Luft JR et al (2014) Identifying, studying and making good use of macromolecular crystals. Acta Crystallogr F Struct Biol Commun 70:993–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sazaki G (2009) Crystal quality enhancement by magnetic fields. Prog Biophys Mol Biol 101:45–55

    Article  CAS  PubMed  Google Scholar 

  65. Surade S, Ochi T, Nietlispach D et al (2010) Investigations into protein crystallization in the presence of a strong magnetic field. Cryst Growth Des 10:691–699

    Article  CAS  Google Scholar 

  66. Hammadi Z, Veesler S (2009) New approaches on crystallization under electric fields. Prog Biophys Mol Biol 101:38–44

    Article  CAS  PubMed  Google Scholar 

  67. Koizumi H, Uda S, Fujiwara K et al (2015) Crystallization of high-quality protein crystals using an external electric field. J Appl Crystallogr 48:1507–1513

    Article  CAS  Google Scholar 

  68. Sazaki G, Moreno A, Nakajima K (2004) Novel coupling effects of the magnetic and electric fields on protein crystallization. J Cryst Growth 262:499–502

    Article  CAS  Google Scholar 

  69. Blakeley MP, Hasnain SS, Antonyuk SV (2015) Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential. IUCrJ 2:464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tomita Y, Koizumi H, Uda S et al (2012) Control of Gibbs free energy relationship between hen egg white lysozyme polymorphs under application of an external alternating current electric field. J Appl Crystallogr 45:207–212

    Article  CAS  Google Scholar 

  71. Wakayama NI (1997) Electrochemistry under microgravity conditions. 3. Behavior of fluids under high magnetic fields. Denki Kagaku 65:179–182

    CAS  Google Scholar 

  72. Wang L, Zhong C, Wakayama NI (2002) Damping of natural convection in the aqueous protein solutions by the application of high magnetic fields. J Cryst Growth 237–239:312–316

    Article  Google Scholar 

  73. Maki S, Oda Y, Ataka M (2004) High-quality crystallization of lysozyme by magneto-Archimedes levitation in a superconducting magnet. J Cryst Growth 261:557–565

    Article  CAS  Google Scholar 

  74. Adachi H, Takano K, Yoshimura M et al (2003) Effective protein crystallization using crystal hysteresis. Jpn J Appl Phys 42:L384–L385

    Article  CAS  Google Scholar 

  75. Yoshikawa HY, Murai R, Adachi H et al (2014) Laser ablation for protein crystal nucleation and seeding. Chem Soc Rev 43:2147–2158

    Article  CAS  PubMed  Google Scholar 

  76. Yoshikawa HY, Murai R, Sugiyama S et al (2009) Femtosecond laser-induced nucleation of protein in agarose gel. J Cryst Growth 311:956–959

    Article  CAS  Google Scholar 

  77. Frontana-Uribe BA, Moreno A (2008) On electrochemically assisted protein crystallization and related methods. Cryst Growth Des 8:4194–4199

    Article  CAS  Google Scholar 

  78. Uda S, Koizumi H, Nozawa J et al (2014) Crystal growth under external electric fields. AIP Conf Proc 1618:261–264

    Article  CAS  Google Scholar 

  79. Pérez Y, Eid D, Acosta F et al (2008) Electrochemically assisted protein crystallization of commercial cytochrome C without previous purification. Cryst Growth Des 8:2493–2496

    Article  CAS  Google Scholar 

  80. Gil-Alvaradejo G, Ruiz-Arellano RR, Owen C et al (2011) Novel protein crystal growth electrochemical cell for applications in X-ray diffraction and atomic force microscopy. Cryst Growth Des 11:3917–3922

    Article  CAS  Google Scholar 

  81. Koizumi H, Uda S, Fujiwara K et al (2011) Control of effect on the nucleation rate for hen egg white lysozyme crystals under application of an external AC electric field. Langmuir 27:8333–8338

    Article  CAS  PubMed  Google Scholar 

  82. Nieto-Mendoza E, Frontana-Uribe BA, Sazaki G et al (2005) Investigations on electromigration phenomena for protein crystallization using crystal growth cells with multiple electrodes: effect of the potential control. J Cryst Growth 275:e1437–e1446

    Article  CAS  Google Scholar 

  83. Koizumi H, Uda S, Fujiwara K et al (2013) Improvement of crystal quality for tetragonal hen egg white lysozyme crystals under application of an external alternating current electric field. J Appl Crystallogr 46:25–29

    Article  CAS  Google Scholar 

  84. Rupp B (2015) Origin and use of crystallization phase diagrams. Acta Crystallogr F Struct Biol Commun 71:247–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yin DC, Wakayama NI, Harata M et al (2004) Formation of protein crystals (orthorhombic lysozyme) in quasi-microgravity environment obtained by superconducting magnet. J Cryst Growth 270:184–191

    Article  CAS  Google Scholar 

  86. Wada H, Hirota S, Matsumoto S et al (2012) Application of high-field superconducting magnet to protein crystallization. Phys Procedia 36:953–957

    Article  CAS  Google Scholar 

  87. Wakayama NI, Wang LB, Ataka M (2002) Effect of a strong magnetic field on protein crystal growth. Proc SPIE 4813. doi:10.1117/12.450135

  88. Zhong C, Wang L, Wakayama NI (2001) Effect of a high magnetic field on protein crystal growth—magnetic field induced order in aqueous protein solutions. J Cryst Growth 233:561–566

    Article  CAS  Google Scholar 

  89. Zhong CW, Wakayama NI (2001) Effect of a high magnetic field on the viscosity of an aqueous solution of protein. J Cryst Growth 226:327–332

    Article  CAS  Google Scholar 

  90. Qi JW, Wakayama NI, Ataka M (2001) Magnetic suppression of convection in protein crystal growth processes. J Cryst Growth 232:132–137

    Article  CAS  Google Scholar 

  91. Yin DC, Geng LQ, Lu QQ et al (2009) Multiple orientation responses of lysozyme crystals to magnetic field when paramagnetic salts are used as the crystallization agents. Cryst Growth Des 9:5083–5091

    Article  CAS  Google Scholar 

  92. Moreno A, Quiroz-Garcia B, Yokaichia F et al (2007) Protein crystal growth in gels and stationary magnetic fields. Cryst Res Technol 42:231–236

    Article  CAS  Google Scholar 

  93. Numoto N, Shimizu K-I, Matsumoto K et al (2013) Observation of the orientation of membrane protein crystals grown in high magnetic force fields. J Cryst Growth 367:53–56

    Article  CAS  Google Scholar 

  94. Heijna MCR, Poodt PWG, Tsukamoto K et al (2007) Magnetically controlled gravity for protein crystal growth. Appl Phys Lett 90:264105

    Article  CAS  Google Scholar 

  95. Garcia-Ruiz JM (2003) Counterdiffusion methods for macromolecular crystallization. Methods Enzymol 368:130–154

    Article  CAS  PubMed  Google Scholar 

  96. Lorber B, Sauter C, Theobald-Dietrich A et al (2009) Crystal growth of proteins, nucleic acids, and viruses in gels. Prog Biophys Mol Biol 101:13–25

    Article  CAS  PubMed  Google Scholar 

  97. Zeppezauer M, Eklund H, Zeppezau ES (1968) Micro diffusion cells for growth of single protein crystals by means of equilibrium dialysis. Arch Biochem Biophys 126:564–573

    Article  CAS  PubMed  Google Scholar 

  98. Salemme FR (1972) A free interface diffusion technique for the crystallization of proteins for X-ray crystallography. Arch Biochem Biophys 151:533–539

    Article  CAS  PubMed  Google Scholar 

  99. Yonath A, Mussig J, Wittmann HG (1982) Parameters for crystal growth of ribosomal subunits. J Cell Biochem 19:145–155

    Article  CAS  PubMed  Google Scholar 

  100. Garcia-Ruiz JM, Novella MI, Moreno R et al (2001) Agarose as crystallization media for proteins: I. Transport processes. J Cryst Growth 232:165–172

    Article  CAS  Google Scholar 

  101. Garcia-Ruiz JM, Gonzalez-Ramirez LA, Gavira JA et al (2002) Granada crystallisation box: a new device for protein crystallisation by counter-diffusion techniques. Acta Crystallogr D Biol Crystallogr 58:1638–1642

    Article  PubMed  CAS  Google Scholar 

  102. Henisch HK, Garcia-Ruiz JM (1986) Crystal-growth in gels and liesegang ring formation. 1. Diffusion relationships. J Cryst Growth 75:195–202

    Article  CAS  Google Scholar 

  103. Henisch HK, Garcia-Ruiz JM (1986) Crystal-growth in gels and liesegang ring formation. 2. Crystallization criteria and successive precipitation. J Cryst Growth 75:203–211

    Article  CAS  Google Scholar 

  104. Carotenuto L, Piccolo C, Castagnolo D et al (2002) Experimental observations and numerical modelling of diffusion-driven crystallisation processes. Acta Crystallogr D Biol Crystallogr 58:1628–1632

    Article  PubMed  CAS  Google Scholar 

  105. Robert MC, Lefaucheux F (1988) Crystal-growth in gels—principle and applications. J Cryst Growth 90:358–367

    Article  CAS  Google Scholar 

  106. Vidal O, Robert MC, Boue F (1998) Gel growth of lysozyme crystals studied by small angle neutron scattering: case of silica gel, a nucleation inhibitor. J Cryst Growth 192:271–281

    Article  CAS  Google Scholar 

  107. Bonnete F, Vidal O, Robert MC et al (1996) Gel techniques and small angle X-ray scattering to follow protein crystal growth. J Cryst Growth 168:185–191

    Article  CAS  Google Scholar 

  108. Garcia-Ruiz JM, Otalora F, Novella ML et al (2001) A supersaturation wave of protein crystallization. J Cryst Growth 232:149–155

    Article  CAS  Google Scholar 

  109. Garcia-Ruiz JM, Otalora F, Garcia-Caballero A (2016) The role of mass transport in protein crystallization. Acta Crystallogr F Struct Biol Commun 72:96–104

    Article  CAS  PubMed  Google Scholar 

  110. Garcia-Ruiz JM, Moreno A, Viedma C et al (1993) Crystal quality of lysozyme single-crystals grown by the gel acupuncture method. Mater Res Bull 28:541–546

    Article  CAS  Google Scholar 

  111. Bolanos-Garcia VM (2003) The use of oil in a counter-diffusive system allows to control nucleation and coarsening during protein crystallization. J Cryst Growth 253:517–523

    Article  CAS  Google Scholar 

  112. Sauter C, Ng JD, Lorber B et al (1999) Additives for the crystallization of proteins and nucleic acids. J Cryst Growth 196:365–376

    Article  CAS  Google Scholar 

  113. Ng JD, Gavira JA, Garcia-Ruiz JM (2003) Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination. J Struct Biol 142:218–231

    Article  CAS  PubMed  Google Scholar 

  114. Littke W, John C (1984) Protein single crystal growth under microgravity. Science 225:203–204

    Article  CAS  PubMed  Google Scholar 

  115. DeLucas LJ, Smith GD, Carter DC et al (1991) Microgravity protein crystal-growth—results and hardware development. J Cryst Growth 109:12–16

    Article  CAS  Google Scholar 

  116. DeLucas LJ, Moore KM, Long MM et al (2002) Protein crystal growth in space, past and future. J Cryst Growth 237:1646–1650

    Article  Google Scholar 

  117. DeLucas LJ (2001) Protein crystallization—is it rocket science? Drug Discovery Today 6:734–744

    Article  CAS  PubMed  Google Scholar 

  118. Snyder R, Pusey M, Carter D et al (1991) Protein crystal-growth in microgravity. AIAA/IKI Microgravity Sci Symp Proc 1:202–204

    Google Scholar 

  119. Snell EH, Judge RA, Crawford L et al (2001) Investigating the effect of impurities on macromolecule crystal growth in microgravity. Cryst Growth Des 1:151–158

    Article  CAS  Google Scholar 

  120. Kundrot CE, Judge RA, Pusey ML et al (2001) Microgravity and macromolecular crystallography. Cryst Growth Des 1:87–99

    Article  CAS  Google Scholar 

  121. Carotenuto L, Cartywright J, Otalora F et al (2001) Depletion zone around sedimenting protein crystals in microgravity. ESA J 454:323–329

    Google Scholar 

  122. Ries-Kautt M, Broutin I, Ducruix A et al (1997) Crystallogenesis studies in microgravity with the advanced protein crystallization facility on SpaceHab-01. J Cryst Growth 181:79–96

    Article  Google Scholar 

  123. Baird JK, Guo LH (1998) Free convection and surface kinetics in crystal growth from solution. J Chem Phys 109:2503–2508

    Article  CAS  Google Scholar 

  124. Lin SP, Hudman M (1995) Non-equilibrium evaporation and condensation at microgravity. Microgravity Sci Technol 8:163–169

    Google Scholar 

  125. Judge RA, Snell EH, van der Woerd MJ (2002) Extracting trends from microgravity crystallization history. Acta Crystallogr D Biol Crystallogr 61:763–771

    Article  CAS  Google Scholar 

  126. Judge RA, Snell EH, van der Woerd MJ (2005) Extracting trends from two decades of microgravity macromolecular crystallization history. Acta Crystallogr D Biol Crystallogr 61:763–771

    Article  PubMed  CAS  Google Scholar 

  127. Trakhanov SD, Grebenko AI, Shirokov VA et al (1991) Crystallization of protein and ribosomal particles in microgravity. J Cryst Growth 110:317–321

    Article  CAS  Google Scholar 

  128. Chayen NE, Snell EH, Helliwell JR et al (1997) CCD video observation of microgravity crystallization: Apocrustacyanin C-1. J Cryst Growth 171:219–225

    Article  CAS  Google Scholar 

  129. Pletser V, Bosch R, Potthast L et al (2009) The protein crystallisation diagnostics facility (PCDF) on board ESA Columbus Laboratory. Microgravity Sci Technol 21:269–277

    Article  CAS  Google Scholar 

  130. Dieckmann MWM, Dierks K (2000) Characterisation of selected bio-molecules in the course of the STS-95 mission, using diagnostics developed within ESA’s Technology and Research Program. Opt Dev Diagn Mater Sci 4098:11–25

    Article  CAS  Google Scholar 

  131. Jancarik J, Kim SH (1991) Sparse-matrix sampling—a screening method for crystallization of proteins. J Appl Crystallogr 24:409–411

    Article  CAS  Google Scholar 

  132. Kim C, Vink M, Hu M et al (2010) An automated pipeline to screen membrane protein 2D crystallization. J Struct Funct Genomics 11:155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Manjasetty BA, Turnbull AP, Panjikar S et al (2008) Automated technologies and novel techniques to accelerate protein crystallography for structural genomics. Proteomics 8:612–625

    Article  CAS  PubMed  Google Scholar 

  134. Vedadi M, Niesen FH, Allali-Hassani A et al (2006) Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc Natl Acad Sci USA 103:15835–15840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bolanos-Garcia VM, Chayen NE (2009) New directions in conventional methods of protein crystallization. Prog Biophys Mol Biol 101:3–12

    Article  CAS  PubMed  Google Scholar 

  136. Ochi T, Balanos-Garcia VM, Stojanoff V et al (2009) Perspectives on protein crystallisation. Prog Biophys Mol Biol 101:56–63

    Article  CAS  PubMed  Google Scholar 

  137. Rupp B, Segelke BW, Krupka HI et al (2002) The TB structural genomics consortium crystallization facility: towards automation from protein to electron density. Acta Crystallogr D Biol Crystallogr 58:1514–1518

    Article  PubMed  CAS  Google Scholar 

  138. van der Woerd M, Ferree D, Pusey M (2003) The promise of macromolecular crystallization in microfluidic chips. J Struct Biol 142:180–187

    Article  PubMed  CAS  Google Scholar 

  139. Pawate AS, Srajer V, Schieferstein J et al (2015) Towards time-resolved serial crystallography in a microfluidic device. Acta Crystallogr F Struct Biol Commun 71:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Horstman EM, Goyal S, Pawate A et al (2015) Crystallization optimization of pharmaceutical solid forms with X-ray compatible microfluidic platforms. Cryst Growth Des 15:1201–1209

    Article  CAS  Google Scholar 

  141. Liu J, Hansen C, Quake SR (2003) Solving the “world-to-chip” interface problem with a microfluidic matrix. Anal Chem 75:4718–4723

    Article  CAS  PubMed  Google Scholar 

  142. Perry SL, Higdon JJL, Kenis PJA (2010) Design rules for pumping and metering of highly viscous fluids in microfluidics. Lab Chip 10:3112–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hansen C, Quake SR (2003) Microfluidics in structural biology: smaller, faster... better. Curr Opin Struct Biol 13:538–544

    Article  CAS  PubMed  Google Scholar 

  144. Hansen C, Leung K, Mousavil P (2007) Chipping in to microfluidics. Phys World 20:24–29

    Article  CAS  Google Scholar 

  145. Sauter C, Dhouib K, Lorber B (2007) From macrofluidics to microfluidics for the crystallization of biological macromolecules. Cryst Growth Des 7:2247–2250

    Article  CAS  Google Scholar 

  146. Abdallah BG, Roy-Chowdhury S, Fromme R et al (2016) Protein crystallization in an actuated microfluidic nanowell device. Cryst Growth Des 16:2074–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mignard E, Lorber N, Sarrazin F et al (2011) Microfluidics: a new tool for research in chemistry. Actualite Chimique 353-354:25–28

    CAS  Google Scholar 

  148. Gong H, Beauchamp M, Perry S et al (2015) Optical approach to resin formulation for 3D printed microfluidics. RSC Adv 5:106621–106632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Abdallah BG, Kupitz C, Fromme P et al (2013) Crystallization of the large membrane protein complex photosystem I in a microfluidic channel. ACS Nano 7:10534–10543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Abdallah BG, Zatsepin NA, Roy-Chowdhury S et al (2015) Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction. Struct Dyn 2:041719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Maeki M, Yamaguchi H, Tokeshi M et al (2016) Microfluidic approaches for protein crystal structure analysis. Anal Sci 32:3–9

    Article  CAS  PubMed  Google Scholar 

  152. Li JJ, Chen QL, Li GZ et al (2009) Research and application of microfluidics in protein crystallization. Prog Chem 21:1034–1039

    CAS  Google Scholar 

  153. Hunter MS, Fromme P (2011) Toward structure determination using membrane-protein nanocrystals and microcrystals. Methods 55:387–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yokoyama T, Ostermann A, Mizoguchi M et al (2014) Crystallization and preliminary neutron diffraction experiment of human farnesyl pyrophosphate synthase complexed with risedronate. Acta Crystallogr F Struct Biol Commun 70:470–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tanaka I, Kusaka K, Chatake T et al (2013) Fundamental studies for the proton polarization technique in neutron protein crystallography. J Synchrotron Radiat 20:958–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kawamura K, Yamada T, Kurihara K et al (2011) X-ray and neutron protein crystallographic analysis of the trypsin-BPTI complex. Acta Crystallogr D Biol Crystallogr 67:140–148

    Article  CAS  PubMed  Google Scholar 

  157. Gul S, Hadian K (2014) Protein-protein interaction modulator drug discovery: past efforts and future opportunities using a rich source of low- and high-throughput screening assays. Expert Opin Drug Discov 9:1393–1404

    Article  CAS  PubMed  Google Scholar 

  158. Zimmerman MD, Grabowski M, Domagalski MJ et al (2014) Data management in the modern structural biology and biomedical research environment. Methods Mol Biol 1140:1–25

    Article  PubMed  PubMed Central  Google Scholar 

  159. Stewart PS, Mueller-Dieckmann J (2014) Automation in biological crystallization. Acta Crystallogr F Struct Biol Commun 70:686–696

    Article  PubMed  CAS  Google Scholar 

  160. de Raad M, Fischer CR, Northen TR (2016) High-throughput platforms for metabolomics. Curr Opin Chem Biol 30:7–13

    Article  PubMed  CAS  Google Scholar 

  161. Zheng H, Hou J, Zimmerman MD et al (2014) The future of crystallography in drug discovery. Expert Opin Drug Discovery 9:125–137

    Article  CAS  Google Scholar 

  162. Russi S, Song J, McPhillips SE et al (2016) The Stanford Automated Mounter: pushing the limits of sample exchange at the SSRL macromolecular crystallography beamlines. J Appl Crystallogr 49:622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Boivin S et al (2016) An integrated pipeline for sample preparation and characterization at the EMBL@PETRA3 synchrotron facilities. Methods 95:70–77

    Article  CAS  PubMed  Google Scholar 

  164. Urban M, Tampe R (2016) Membranes on nanopores for multiplexed single-transporter analyses. Microchim Acta 183:965–971

    Article  CAS  Google Scholar 

  165. Bogorodskiy A, Frolov F, Mishin A et al (2015) Nucleation and growth of membrane protein crystals in meso—a fluorescence microscopy study. Cryst Growth Des 15:5656–5660

    Article  CAS  Google Scholar 

  166. Cherezov V, Clogston J, Papiz MZ et al (2006) Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol 357:1605–1618

    Article  CAS  PubMed  Google Scholar 

  167. Liu W, Wacker D, Gati C et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nature Protocols 4:706–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Krauss IR, Merlino A, Vergara A et al (2013) An overview of biological macromolecule crystallization. Int J Mol Sci 14:11643–11691

    Article  PubMed Central  CAS  Google Scholar 

  170. Saridakis E (2012) Perspectives on high-throughput technologies applied to protein crystallization. Protein Pept Lett 19:778–783

    Article  CAS  PubMed  Google Scholar 

  171. Newman J (2006) A review of techniques for maximizing diffraction from a protein crystal in stilla. Acta Crystallogr D Biol Crystallogr 62:27–31

    Article  PubMed  CAS  Google Scholar 

  172. Helliwell JR (2008) Macromolecular crystal twinning, lattice disorders and multiple crystals. Crystallogr Rev 14:189–250

    Article  CAS  Google Scholar 

  173. Boggon TJ, Helliwell JR, Judge RA et al (2000) Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality. Acta Crystallogr D Biol Crystallogr 56:868–880

    Article  CAS  PubMed  Google Scholar 

  174. Otalora F, Capelle B, Ducruix A et al (1999) Mosaic spread characterization of microgravity-grown tetragonal lysozyme single crystals. Acta Crystallogr D Biol Crystallogr 55:644–649

    Article  CAS  PubMed  Google Scholar 

  175. Robert MC, Capelle B, Lorber B (2003) Growth sectors and crystal quality. Methods Enzymol 368:154–169

    Article  CAS  PubMed  Google Scholar 

  176. Robert MC, Capelle B, Lorber B et al (2001) Influence of impurities on protein crystal perfection. J Cryst Growth 232:489–497

    Article  CAS  Google Scholar 

  177. Vidal O, Robert MC, Arnoux B et al (1999) Crystalline quality of lysozyme crystals grown in agarose and silica gels studied by X-ray diffraction techniques. J Cryst Growth 196:559–571

    Article  CAS  Google Scholar 

  178. Otalora F, Garcia-Ruiz JM, Gavira JA et al (1999) Topography and high resolution diffraction studies in tetragonal lysozyme. J Cryst Growth 196:546–558

    Article  CAS  Google Scholar 

  179. Giege R, Lorber B, Theobald-Dietrich A (1994) Crystallogenesis of biological macromolecules—facts and perspectives. Acta Crystallogr D Biol Crystallogr 50:339–350

    Article  CAS  PubMed  Google Scholar 

  180. Gavira JA (2016) Current trends in protein crystallization. Arch Biochem Biophys 101:3–11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the support from the DGAPA-UNAM Project PAPIIT No. IT200215. The author also appreciates the free use of the NMR facility of LURMN-IQ-UNAM for growing crystals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Moreno, A. (2017). Advanced Methods of Protein Crystallization. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics