Skip to main content

Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

The normal elastic X-ray scattering that depends only on electron density can be modulated by an “anomalous” component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those that can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hendrickson WA (2014) Anomalous diffraction in crystallographic phase evaluation. Q Rev Biophys 47:49–93

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hendrickson WA (1985) Analysis of protein structure from diffraction measurements at multiple wavelengths. Trans Am Cryst Assn 21:11–21

    CAS  Google Scholar 

  3. Hendrickson WA (1991) Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254:51–58

    Article  CAS  PubMed  Google Scholar 

  4. Hendrickson WA, Teeter MM (1981) Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulfur. Nature 290:107–113

    Article  CAS  Google Scholar 

  5. Hendrickson WA, Ogata CM (1997) Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol 276:494–523

    Article  CAS  PubMed  Google Scholar 

  6. Walsh MA, Evans G, Sanishvili R, Dementieva I, Joachimiak A (1999) MAD data collection—current trends. Acta Crystallogr D Biol Crystallogr 55:1726–1732

    Article  CAS  PubMed  Google Scholar 

  7. Blow DM (2003) How Bijvoet made the difference: the growing power of anomalous scattering. Methods Enzymol 374:3–22

    Article  CAS  PubMed  Google Scholar 

  8. Wang BC (1985) Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol 115:90–112

    Article  CAS  PubMed  Google Scholar 

  9. Cowtan KD, Zhang KYJ (1999) Density modification for macromolecular phase improvement. Prog Biophys Mol Biol 72:245–270

    Article  CAS  PubMed  Google Scholar 

  10. Wu H, Lustbader JW, Liu Y et al (1994) Structure of human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein. Structure 2:545–558

    Google Scholar 

  11. Liu Y, Ogata CM, Hendrickson WA (2001) Multiwavelength anomalous diffraction analysis at the M absorption edges of uranium. Proc Natl Acad Sci U S A 98:10648–10653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shapiro L, Fannon AM, Kwong PD et al (1995) Structural basis of cell-cell adhesion by cadherins. Nature 374:327–337

    Article  CAS  PubMed  Google Scholar 

  13. Cromer DT, Liberman DA (1981) Anomalous dispersion calculations near to and on the long-wavelength side of an absorption edge. Acta Crystallogr A 37:267–268

    Article  Google Scholar 

  14. Bovenkamp GL, Zanzen U, Krishna KS et al (2013) X-ray absorption near-edge structure (XANES) spectroscopy study of the interaction of silver ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. Appl Environ Microbiol 79:6385–6390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sepulcre F, Proietti MG, Benfatto M et al (2004) A quantitative XANES analysis of the calcium high-affinity binding site of the purple membrane. Biophys J 87:513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Evans G, Pettifer RF (2001) CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. J Appl Crystallogr 34:82–86

    Article  CAS  Google Scholar 

  17. Pike AC, Garman EF, Krojer T et al (2016) An overview of heavy-atom derivatization of protein crystals. Acta Crystallogr D Biol Crystallogr 72:303–318

    Article  CAS  Google Scholar 

  18. Boggon TJ, Shapiro L (2000) Screening for phasing atoms in protein crystallography. Struct Fold Des 8:R143–R149

    Article  CAS  Google Scholar 

  19. Hendrickson WA, Horton JR, Lemaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD)—a vehicle for direct determination of three-dimensional structure. EMBO J 9:1665–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Q, Liu Q, Hendrickson WA (2013) Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data. Acta Crystallogr D Biol Crystallogr 69:1314–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qi R, Sarbeng EB, Liu Q et al (2013) Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat Struct Mol Biol 20:900–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pflugrath JW (2015) Practical macromolecular cryocrystallography. Acta Crystallogr F Struct Biol Commun F71:622–642

    Article  Google Scholar 

  23. Pellegrini E, Piano D, Bowler MW (2011) Direct cryocooling of naked crystals: are cryoprotection agents always necessary? Acta Crystallogr D Biol Crystallogr 67:902–906

    Article  CAS  PubMed  Google Scholar 

  24. Garman EF, Weik M (2015) Radiation damage to macromolecules: kill or cure? J Synchrotron Radiat 22:195–200

    Article  CAS  PubMed  Google Scholar 

  25. Weinert T, Olieric V, Waltersperger S et al (2015) Fast native-SAD phasing for routine macromolecular structure determination. Nat Methods 12:131–133

    Article  CAS  PubMed  Google Scholar 

  26. Waltersperger S, Olieric V, Pradervand C et al (2015) PRIGo: a new multi-axis goniometer for macromolecular crystallography. J Synchrotron Radiat 22:895–900

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu Q, Zhang Z, Hendrickson WA (2011) Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. Acta Crystallogr D Biol Crystallogr 67:45–59

    Article  CAS  PubMed  Google Scholar 

  28. Olieric V, Weinert T, Finke AD et al (2016) Data-collection strategy for challenging native SAD phasing. Acta Crystallogr D Biol Crystallogr 72:421–429

    Article  CAS  Google Scholar 

  29. Hendrickson WA, Smith JL, Sheriff S (1985) Direct phase determination based on anomalous scattering. Methods Enzymol 115:41–55

    Article  CAS  PubMed  Google Scholar 

  30. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  31. Pflugrath JW (1999) The finer things in X-ray diffraction data collection. Acta Crystallogr D Biol Crystallogr 55:1718–1725

    Article  CAS  PubMed  Google Scholar 

  32. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leslie AGW (2006) The integration of macromolecular diffraction data. Acta Crystallogr D Biol Crystallogr 62:48–57

    Article  PubMed  Google Scholar 

  34. Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 66:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adams PD, Afonine PV, Bunkoczi G et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Evans PR (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D Biol Crystallogr 67:282–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69:1204–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dauter Z (2006) Estimation of anomalous signal in diffraction data. Acta Crystallogr D Biol Crystallogr 62:867–876

    Article  PubMed  Google Scholar 

  40. Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62:72–82

    Article  PubMed  Google Scholar 

  41. Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 58:1772–1779

    Article  PubMed  Google Scholar 

  42. Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr 66:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weeks CM, Miller R (1999) The design and implementation of SnB version 2.0. J Appl Crystallogr 32:120–124

    Article  CAS  Google Scholar 

  44. Pahler A, Smith JL, Hendrickson WA (1990) A probability representation for phase information from multiwavelength anomalous dispersion. Acta Crystallogr A 46:537–540

    Article  PubMed  Google Scholar 

  45. Fortelle E, Bricogne G (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 276:472–494

    Article  Google Scholar 

  46. Read RJ, McCoy AJ (2011) Using SAD data in Phaser. Acta Crystallogr D Biol Crystallogr 67:338–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abrahams J, Leslie A (1996) Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr D Biol Crystallogr 52:30–42

    Article  CAS  PubMed  Google Scholar 

  48. Langer G, Cohen SX, Lamzin VS et al (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3:1171–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cowtan K (2006) The buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002–1011

    Article  PubMed  Google Scholar 

  50. Emsley P, Lohkamp B, Scott WG et al (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Q, Hendrickson WA (2015) Crystallographic phasing from weak anomalous signals. Curr Opin Struct Biol 34:99–107

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wagner A, Duman R, Henderson K et al (2016) In-vacuum long-wavelength macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 72:430–439

    Article  CAS  Google Scholar 

  53. Ru H, Zhao L, Ding W et al (2012) S-SAD phasing study of death receptor 6 and its solution conformation revealed by SAXS. Acta Crystallogr D Biol Crystallogr 68:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dauter Z, Adamiak DA (2001) Anomalous signal of phosphorus used for phasing DNA oligomer: importance of data redundancy. Acta Crystallogr D Biol Crystallogr 57:990–995

    Article  CAS  PubMed  Google Scholar 

  55. Liu ZJ, Chen L, Wu D et al (2011) A multi-dataset data-collection strategy produces better diffraction data. Acta Crystallogr A 67:544–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garman EF (2010) Radiation damage in macromolecular crystallography: what is it and why should we care? Acta Crystallogr D Biol Crystallogr 66:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mancusso R, Gregorio GG, Liu Q, Wang DN (2012) Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491:622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu Q, Dahmane T, Zhang Z et al (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336:1033–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Foadi J, Aller P, Alguel Y et al (2013) Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 69:1617–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Akey DL, Terwilliger TC, Smith JL (2016) Efficient merging of data from multiple samples for determination of anomalous substructure. Acta Crystallogr D Biol Crystallogr 72:296–302

    Article  CAS  Google Scholar 

  61. Einsle O, Andrade SL, Dobbek H et al (2007) Assignment of individual metal redox states in a metalloprotein by crystallographic refinement at multiple X-ray wavelengths. J Am Chem Soc 129:2210–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Spatzal T, Schlesier J, Burger EM et al (2016) Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement. Nat Commun 7:10902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou Y, MacKinnon R (2003) The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J Mol Biol 333:965–975

    Article  CAS  PubMed  Google Scholar 

  64. Echols N, Morshed N, Afonine PV et al (2014) Automated identification of elemental ions in macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 70:1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leahy DJ, Erickson HP, Aukhil I et al (1994) Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins 19:48–54

    Article  CAS  PubMed  Google Scholar 

  66. Oubridge C, Krummel DA, Leung AK et al (2009) Interpreting a low resolution map of human U1 snRNP using anomalous scatterers. Structure 17:930–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Feng L, Campbell EB, Hsiung Y et al (2010) Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330:635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jin MS, Oldham ML, Zhang Q et al (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490:566–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Saotome K, Singh AK, Yelshanskaya MV et al (2016) Crystal structure of the epithelial calcium channel TRPV6. Nature 534:506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thorn A, Sheldrick GM (2011) ANODE: anomalous and heavy-atom density calculation. J Appl Crystallogr 44:1285–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Groftehauge MK, Therkelsen MO, Taaning R et al (2013) Identifying ligand-binding hot spots in proteins using brominated fragments. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:1060–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tiefenbrunn T, Forli S, Happer M et al (2014) Crystallographic fragment-based drug discovery: use of a brominated fragment library targeting HIV protease. Chem Biol Drug Des 83:141–148

    Article  CAS  PubMed  Google Scholar 

  73. Bauman JD, Harrison JJ, Arnold E (2016) Rapid experimental SAD phasing and hot-spot identification with halogenated fragments. IUCrJ 3:51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Loeliger T, Bronnimann C, Donath T et al (2012) The new PILATUS3 ASIC with instant retrigger capability. In: Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), IEEE, pp 610–615. doi:10.1109/NSSMIC.2012.6551180

  75. Tinti G, Bergamaschi A, Cartier S et al (2015) Performance of the EIGER single photon counting detector. J Instrum 10:C03011

    Article  Google Scholar 

  76. Mueller M, Wang M, Schulze-Briese C (2012) Optimal fine phi-slicing for single-photon-counting pixel detectors. Acta Crystallogr D Biol Crystallogr 68:42–56

    Article  CAS  PubMed  Google Scholar 

  77. Brockhauser S, Ravelli RB, McCarthy AA (2013) The use of a mini-kappa goniometer head in macromolecular crystallography diffraction experiments. Acta Crystallogr D Biol Crystallogr 69:1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Skubak P, Pannu NS (2013) Automatic protein structure solution from weak X-ray data. Nat Commun 4:2777

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bunkóczi G, McCoy AJ, Echols N et al (2014) Macromolecular X-ray structure determination using weak, single-wavelength anomalous data. Nat Methods 12:127–130

    Article  PubMed  PubMed Central  Google Scholar 

  80. Barends TR, Foucar L, Botha S et al (2014) De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505:244–247

    Article  CAS  PubMed  Google Scholar 

  81. Nakane T, Song C, Suzuki M et al (2015) Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 71:2519–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nass K, Meinhart A, Barends TR et al (2016) Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ 3:180–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants R01GM107462 and P41GM116799 and by Brookhaven National Laboratory LDRD 15-034.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Liu or Wayne A. Hendrickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liu, Q., Hendrickson, W.A. (2017). Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics