Skip to main content

Structure Determination Using X-Ray Free-Electron Laser Pulses

  • Protocol
  • First Online:
Protein Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1607))

Abstract

The intense X-ray pulses from free-electron lasers, of only femtoseconds duration, outrun most of the processes that lead to structural degradation in X-ray exposures of macromolecules. Using these sources it is therefore possible to increase the dose to macromolecular crystals by several orders of magnitude higher than usually tolerable in conventional measurements, allowing crystal size to be decreased dramatically in diffraction measurements and without the need to cool the sample. Such pulses lead to the eventual vaporization of the sample, which has required a measurement approach, called serial crystallography, of consolidating snapshot diffraction patterns of many individual crystals. This in turn has further separated the connection between dose and obtainable diffraction information, with the only requirement from a single pattern being that to give enough information to place it, in three-dimensional reciprocal space, in relation to other patterns. Millions of extremely weak patterns can be collected and combined in this way, requiring methods to rapidly replenish the sample into the beam while generating the lowest possible background . The method is suited to time-resolved measurements over timescales below 1 ps to several seconds, and opens new opportunities for phasing. Some straightforward considerations of achievable signal levels are discussed and compared with a wide variety of recent experiments carried out at XFEL, synchrotron, and even laboratory sources, to discuss the capabilities of these new approaches and give some perspectives on their further development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McNeil BWJ, Thompson NR (2010) X-ray free-electron lasers. Nat Photon 4:814–821

    Article  CAS  Google Scholar 

  2. Liu W, Wacker D, Gati C et al (2013) Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou Q, Lai Y, Bacaj T et al (2015) Architecture of the synaptotagmin-snare machinery for neuronal exocytosis. Nature 525:62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DePonte DP, Weierstall U, Schmidt K et al (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D41:195505

    Google Scholar 

  5. Weierstall U, Spence JCH, Doak RB (2012) Injector for scattering measurements on fully solvated biospecies. Rev Sci Instrum 83:035108

    Article  CAS  PubMed  Google Scholar 

  6. Weierstall U, James D, Wang C et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sugahara M, Mizohata E, Nango E et al (2015) Grease matrix as a versatile carrier of proteins for serial crystallography. Nat Methods 12:61–63

    Article  CAS  PubMed  Google Scholar 

  8. Conrad CE, Basu S, James D et al (2015) A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ 2:421–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bogan M, Benner W, Boutet S et al (2008) Single particle X-ray diffractive imaging. Nano Lett 8:310–316

    Article  CAS  PubMed  Google Scholar 

  10. Zarrine-Afsar A, Müller C, Talbot FO et al (2011) Self-localizing stabilizing mega-pixel picoliter arrays with size-excluding sorting capabilities. Anal Chem 83:767–773

    Article  CAS  PubMed  Google Scholar 

  11. Hunter MS, Segelke B, Messerschmidt M et al (2014) Fixed-target protein serial microcrystallography with an X-ray free electron laser. Sci Rep 4:6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roedig P, Vartiainen I, Duman R et al (2015) A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci Rep 5:10451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kirian RA, White TA, Holton JM et al (2011) Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallogr A 67:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Neutze R, Wouts R, van der Spoel D et al (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:753–757

    Article  Google Scholar 

  15. Huldt G, Szoke A, Hajdu J (2003) Diffraction imaging of single particles and biomolecules. J Struct Biol 144:219–227

    Article  CAS  PubMed  Google Scholar 

  16. Frank M, Carlson DB, Hunter MS et al (2014) Femtosecond X-ray diffraction from two-dimensional protein crystals. IUCrJ 1:95–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Küpper J, Stern S, Holmegaard L et al (2014) X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser. Phys Rev Lett 112:083002

    Article  CAS  Google Scholar 

  18. Barends TRM, Foucar L, Ardevol A et al (2015) Direct observation of ultrafast collective motions in co myoglobin upon ligand dissociation. Science 350:445–450

    Article  CAS  PubMed  Google Scholar 

  19. Pande K, Hutchison CDM, Groenhof G et al (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmidt M (2013) Mix and inject: reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv Cond Matter Phys 10:167276

    Google Scholar 

  21. Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193

    Article  CAS  PubMed  Google Scholar 

  22. Chapman HN, Caleman C, Timneanu N (2014) Diffraction before destruction. Philos Trans R Soc B369:20130313

    Article  Google Scholar 

  23. Creagh DC, Hubbell JH (2006) X-ray absorption (or attenuation) coefficients. Int Tables Crystallogr C:220–229

    Google Scholar 

  24. Son S-K, Young L, Santra R (2011) Impact of hollow-atom formation on coherent X-ray scattering at high intensity. Phys Rev A83:033402

    Article  CAS  Google Scholar 

  25. Caleman C, Ortiz C, Marklund E et al (2009) Radiation damage in biological material: electronic properties and electron impact ionization in urea. Europhys Lett 85:18005, erratum 88: 29901

    Google Scholar 

  26. Barty A, Caleman C, Aquila A et al (2012) Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat Photon 6:35–40

    Article  CAS  Google Scholar 

  27. Nass K, Foucar L, Barends TRM et al (2015) Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J Synchrotron Radiat 22:225–238

    Article  CAS  PubMed  Google Scholar 

  28. Son S-K, Chapman HN, Santra R (2011) Multiwavelength anomalous diffraction at high X-ray intensity. Phys Rev Lett 107:218102

    Article  PubMed  CAS  Google Scholar 

  29. Son S-K, Chapman HN, Santra R (2013) Determination of multiwavelength anomalous diffraction coefficients at high X-ray intensity. J Phys B46:164015

    Google Scholar 

  30. Galli L, Son S-K, Barends TRM et al (2015) Towards phasing using high X-ray intensity. IUCrJ 2:627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Serkez S, Kocharyan V, Saldin E et al (2013) Proposal for a scheme to generate 10 TW-level femtosecond X-ray pulses for imaging single protein molecules at the European XFEL. arXiv.org:1306.0804

  32. Davis KM, Kosheleva I, Henning RW et al (2013) Kinetic modeling of the X-ray-induced damage to a metalloprotein. J Phys Chem B117:9161–9169

    Article  CAS  Google Scholar 

  33. Owen RL, Rudino-Pinera E, Garman EF (2006) Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci U S A 103:4912–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garman EF, Weik M (2015) Radiation damage to macromolecules: kill or cure? J Synchrotron Radiat 22:195–200

    Article  CAS  PubMed  Google Scholar 

  35. Cowan A, Nave C (2008) The optimum conditions to collect X-ray data from very small samples. J Synchrotron Radiat 15:458–462

    Article  CAS  PubMed  Google Scholar 

  36. Coquelle N, Brewster AS, Kapp U et al (2015) Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams. Acta Crystallogr D Biol Crystallogr 71:1184–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koopmann R, Cupelli K, Redecke L et al (2012) In vivo protein crystallization opens new routes in structural biology. Nat Methods 9:259–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Redecke L, Nass K, DePonte DP et al (2013) Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science 339:227–230

    Article  CAS  PubMed  Google Scholar 

  39. Jakobi AJ, Passon DM, Knoops K et al (2016) In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells. IUCrJ 3:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sawaya MR, Cascio D, Gingery M et al (2014) Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam. Proc Natl Acad Sci U S A 111:12769–12774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ayyer K, Philipp HT, Tate MW et al (2015) Determination of crystallographic intensities from sparse data. IUCrJ 2:29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wierman JL, Lan T-Y, Tate MW et al (2016) Protein crystal structure from non-oriented, single-axis sparse X-ray data. IUCrJ 3:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Loh NTD, Elser V (2009) Reconstruction algorithm for single-particle diffraction imaging experiments. Phys Rev E80:026705

    Google Scholar 

  44. Fung R, Shneerson V, Saldin DK et al (2009) Structure from fleeting illumination of faint spinning objects in flight. Nat Phys 5:64–67

    Article  CAS  Google Scholar 

  45. White TA (2014) Post-refinement method for snapshot serial crystallography. Philos Trans R Soc B369:20130330

    Article  Google Scholar 

  46. Gati C, Oberthuer D, Yefanov O et al (2017) Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser. Proc Natl Acad Sci U S A 114:2247–2252

    Google Scholar 

  47. Galli L, Metcalf P, Chapman HN (2015) Implications of the focal beam profile in serial femtosecond crystallography. Proc SPIE 9511:95110H

    Article  Google Scholar 

  48. Liang M, Williams GJ, Messerschmidt M et al (2015) The coherent X-ray imaging instrument at the linac coherent light source. J Synchrotron Radiat 22:514–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hart P, Boutet S, Carini G et al (2012) The CSPAD megapixel X-ray camera at LCLS. Proc SPIE 8504:85040C–850411

    Article  Google Scholar 

  50. Kärtner F, Ahr F, Calendron A-L et al (2016) AXSIS: exploring the frontiers in attosecond X-ray science, imaging and spectroscopy. Nucl Instrum Methods Phys Res A829:24–29

    Article  CAS  Google Scholar 

  51. Allahgholi A, Becker J, Bianco L et al (2015) AGIPD, a high dynamic range fast detector for the European XFEL. J Instrum 10:C01023

    Article  Google Scholar 

  52. Brehm W, Diederichs K (2014) Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr D Biol Crystallogr 70:101–109

    Article  CAS  PubMed  Google Scholar 

  53. Ginn HM, Messerschmidt M, Ji X et al (2015) Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nat Commun 6:6435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barends TRM, Foucar L, Botha S et al (2014) De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505:244–247

    Article  CAS  PubMed  Google Scholar 

  55. Nakane T, Song C, Suzuki M (2015) Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallogr D Biol Crystallogr 71:2519–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nass K, Meinhart A, Barends TRM et al (2016) Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ 3:180–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmidt S (2014) GrainSpotter: a fast and robust polycrystalline indexing algorithm. J Appl Crystallogr 47:276–284

    Article  CAS  Google Scholar 

  58. Gildea RJ, Waterman DG, Parkhurst JM et al (2014) New methods for indexing multi-lattice diffraction data. Acta Crystallogr D Biol Crystallogr 70:2652–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ginn HM, Roedig P, Kuo A et al (2016) TakeTwo: an indexing algorithm suited to still images with known crystal parameters. Acta Crystallogr D Biol Crystallogr 72:956–965

    Article  CAS  Google Scholar 

  60. White TA, Barty A, Stellato F et al (2013) Crystallographic data processing for free-electron laser sources. Acta Crystallogr D Biol Crystallogr 69:1231–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hirata K, Shinzawa-Itoh K, Yano N et al (2014) Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 11:734–736

    Article  CAS  PubMed  Google Scholar 

  62. Cohen AE, Soltis SM, Gonzalez A et al (2014) Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proc Natl Acad Sci U S A 111:17122–17127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Diederichs K, Karplus PA (2013) Better models by discarding data? Acta Crystallogr D Biol Crystallogr 69:1215–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang T, Jin S, Gu Y et al (2015) SFX analysis of non-biological polycrystalline samples. IUCrJ 2:322–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu Q, Dahmane T, Zhang Z et al (2012) Structures from anomalous diffraction of native biological macromolecules. Science 336:1033–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schlichting I (2015) Serial femtosecond crystallography: the first five years. IUCrJ 2:246–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chavas LMG, Gumprecht L, Chapman HN (2015) Possibilities for serial femtosecond crystallography sample delivery at future light sources. Struct Dyn 2:041709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chapman HN (2015) Serial femtosecond crystallography. Synchrotron Radiat News 28:20–24

    Article  Google Scholar 

  69. Gruner SM, Lattman EE (2015) Biostructural science inspired by next-generation X-ray sources. Annu Rev Biophys 44:33–51

    Article  CAS  PubMed  Google Scholar 

  70. Boutet S, Williams SG (2010) The coherent X-ray imaging (CXI) instrument at the linac coherent light source (LCLS). New J Phys 12:035024

    Article  Google Scholar 

  71. Bozek JD (2009) AMO instrumentation for the LCLS X-ray FEL. Eur Phys J 169:129–132

    Google Scholar 

  72. Song C, Tono K, Park J et al (2014) Multiple application X-ray imaging chamber for single-shot diffraction experiments with femtosecond X-ray laser pulses. J Appl Crystallogr 47:188–197

    Article  CAS  Google Scholar 

  73. Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gañan Calvo AM (1998) Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys Rev Lett 80:285–288

    Article  Google Scholar 

  75. Awel S, Kirian RA, Eckerskorn N et al (2016) Visualizing aerosol-particle injection for diffractive-imaging experiments. Opt Express 24:6507–6521

    Article  CAS  PubMed  Google Scholar 

  76. Stan CA, Milathianaki D, Laksmono H et al (2016) Liquid explosions induced by X-ray laser pulses. Nat Phys 12:966–971

    Article  CAS  Google Scholar 

  77. Roessler CG, Kuczewski A, Stearns R et al (2013) Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines. J Synchrotron Radiat 20:805–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ganan-Calvo AM, Gonzalez-Prieto R, Riesco-Chueca P (2007) Focusing capillary jets close to the continuum limit. Nat Phys 3:737–742

    Article  CAS  Google Scholar 

  79. Wang D, Weierstall U, Pollack L et al (2014) Double-focusing mixing jet for XFEL study of chemical kinetics. J Synchrotron Radiat 21:1364–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oberhuer D et al (2017) Room-temperature structure determination of RNA polymerase II enabled by double-flow focusing injection. Sci Rep 7:44628

    Google Scholar 

  81. Lee C-Y, Chang C-L, Wang Y-N et al (2011) Microfluidic mixing: a review. Int J Mol Sci 12:3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu P, Ziemann PJ, Kittleson DB et al (1995) Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci Technol 22:314–324

    Article  CAS  Google Scholar 

  83. Seibert MM, Ekeberg T, Maia FRNC et al (2011) Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470:78–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Aquila A, Barty A, Bostedt C et al (2015) The linac coherent light source single particle imaging road map. Struct Dyn 2:041701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eckerskorn N, Bowman R, Kirian RA et al (2015) Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum. Phys Rev Appl 4:064001

    Article  CAS  Google Scholar 

  86. Sherrell DA, Foster AJ, Hudson L et al (2015) A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources. J Synchrotron Radiat 22:1372–1378

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yuk JM, Park J, Ercius P et al (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:61–64

    Article  CAS  PubMed  Google Scholar 

  88. Spence JCH, Kirian RA, Wang X et al (2011) Phasing of coherent femtosecond X-ray diffraction from size- varying nanocrystals. Opt Express 19:2866–2873

    Article  CAS  PubMed  Google Scholar 

  89. Kirian RA, Bean RJ, Beyerlein KR et al (2015) Direct phasing of finite crystals illuminated with a free-electron laser. Phys Rev X 5:011015

    CAS  Google Scholar 

  90. Ayyer K, Yefanov OM, Oberthür D (2016) Macromolecular diffractive imaging using imperfect crystals. Nature 530:202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Millane RP (1990) Phase retrieval in crystallography and optics. J Opt Soc Am A 7:394–411

    Article  Google Scholar 

  92. Sayre D, Chapman HN (1995) X-ray microscopy. Acta Crystallogr A 51:237–252

    Article  PubMed  Google Scholar 

  93. Sayre D (1952) Some implications of a theorem due to Shannon. Acta Crystallogr 5:843

    Article  Google Scholar 

  94. Oszlányi G, Süto A (2008) The charge flipping algorithm. Acta Crystallogr A 64:123–134

    Article  PubMed  CAS  Google Scholar 

  95. Elser V, Millane RP (2008) Reconstruction of an object from its symmetry-averaged diffraction pattern. Acta Crystallogr A 64:273–279

    Article  CAS  PubMed  Google Scholar 

  96. Thibault P, Elser V (2010) X-ray diffraction microscopy. Annu Rev Cond Matter Phys 1:237–255

    Article  CAS  Google Scholar 

  97. Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21:2758–2769

    Article  CAS  PubMed  Google Scholar 

  98. Bragg L, Perutz MF (1952) The structure of Haemoglobin. Proc R Soc Lond 213:425–435

    Article  CAS  Google Scholar 

  99. He H, Su W-P (2015) Direct phasing of protein crystals with high solvent content. Acta Crystallogr A 71:92–98

    Article  CAS  Google Scholar 

  100. Wall ME, Adams PD, Fraser JS et al (2014) Diffuse X-ray scattering to model protein motions. Structure 22:182–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Crowther R, DeRosier D, Klug A (1970) The reconstruction of a three-dimensional structure from its projections and its applications to electron microscopy. Proc R Soc Lond 317:319–340

    Article  Google Scholar 

  102. Roedig P, Duman R, Sanchez-Weatherby J et al (2016) Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. J Appl Crystallogr 49:968–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stellato F, Oberthür D, Liang M et al (2014) Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1:204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nogly P, James D, Wang D et al (2015) Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2:168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Botha S, Nass K, Barends TRM et al (2015) Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallogr D Biol Crystallogr 71:387–397

    Article  CAS  PubMed  Google Scholar 

  106. Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gati C, Bourenkov G, Klinge M et al (2014) Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ 1:87–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kupitz C, Basu S, Grotjohann I et al (2014) Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pedrini B, Tsai C-J, Capitani G et al (2014) 7 Ã… resolution in protein two-dimensional-crystal X-ray diffraction at linac coherent light source. Philos Trans R Soc Lond B Biol Sci B369:20130500

    Article  Google Scholar 

  110. Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Radiat 16:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry N. Chapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chapman, H.N. (2017). Structure Determination Using X-Ray Free-Electron Laser Pulses. In: Wlodawer, A., Dauter, Z., Jaskolski, M. (eds) Protein Crystallography. Methods in Molecular Biology, vol 1607. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7000-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7000-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6998-2

  • Online ISBN: 978-1-4939-7000-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics