Skip to main content

Biochemical and Biophysical Methods for Analysis of Poly(ADP-Ribose) Polymerase 1 and Its Interactions with Chromatin

  • Protocol
  • First Online:
Poly(ADP-Ribose) Polymerase

Abstract

Poly (ADP-Ribose) Polymerase I (PARP-1) is a first responder to DNA damage and participates in the regulation of gene expression. The interaction of PARP-1 with chromatin and DNA is complex and involves at least two different modes of interaction. In its enzymatically inactive state, PARP-1 binds native chromatin with similar affinity as it binds free DNA ends. Automodification of PARP-1 affects interaction with chromatin and DNA to different extents. Here we describe a series of biochemical and biophysical techniques to quantify and dissect the different binding modes of PARP-1 with its various substrates. The techniques listed here allow for high throughput and quantitative measurements of the interaction of different PARP-1 constructs (inactive and automodified) with chromatin and DNA damage models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langelier MF, Riccio AA, Pascal JM (2014) PARP-2 and PARP-3 are selectively activated by 5′ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res 42:7762–7775. doi:10.1093/nar/gku474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kraus WL (2008) Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 20:294–302. doi:10.1016/j.ceb.2008.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muthurajan UM, Hepler MRD, Hieb AR et al (2014) Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone. PNAS 111:12752–12757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wacker DA, Ruhl DD, Balagamwala EH et al (2007) The DNA binding and catalytic domains of poly(ADP-ribose) polymerase 1 cooperate in the regulation of chromatin structure and transcription. Mol Cell Biol 27:7475–7485. doi:10.1128/MCB.01314-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clark NJ, Kramer M, Muthurajan UM, Luger K (2012) Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes. J Biol Chem 287:32430–32439. doi:10.1074/jbc.M112.397067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Langelier MF, Planck JL, Servent KM, Pascal JM (2011) Purification of human PARP-1 and PARP-1 domains from Escherichia coli for structural and biochemical analysis. Methods Mol Biol 780:209–226. doi:10.1007/978-1-61779-270-0_13

    Article  CAS  PubMed  Google Scholar 

  7. Muthurajan U, Mattiroli F, Bergeron S et al (2016) In vitro chromatin assembly: strategies and quality control. Methods Enzymol 573:3–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dyer PN, Edayathumangalam RS, White CL et al (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44

    Article  CAS  PubMed  Google Scholar 

  9. Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42. doi:10.1006/jmbi.1997.1494

    Article  CAS  PubMed  Google Scholar 

  10. Winkler DD, Muthurajan UM, Hieb AR, Luger K (2011) Histone chaperone FACT coordinates nucleosome interaction through multiple synergistic binding events. J Biol Chem 286:41883–41892. doi:10.1074/jbc.M111.301465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2:1849–1861. doi:10.1038/nprot.2007.249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hieb AR, D’Arcy S, Kramer MA et al (2012) Fluorescence strategies for high-throughput quantification of protein interactions. Nucleic Acids Res 40:e33. doi:10.1093/nar/gkr1045

    Article  CAS  PubMed  Google Scholar 

  13. Winkler DD, Luger K, Hieb AR (2012) Quantifying chromatin-associated interactions: the HI-FI system. Methods Enzymol 512:243–274. doi:10.1016/B978-0-12-391940-3.00011-1

    Article  CAS  PubMed  Google Scholar 

  14. Olson EJ, Buhlmann P (2011) Getting more out of a job plot: determination of reactant to product stoichiometry in cases of displacement reactions and n:n complex formation. J Org Chem 76:8406–8412. doi:10.1021/jo201624p

    Article  CAS  PubMed  Google Scholar 

  15. Kar SR, Kingsbury JS, Lewis MS et al (2000) Analysis of transport experiments using pseudo-absorbance data. Anal Biochem 285:135–142. doi:10.1006/abio.2000.4748

    Article  CAS  PubMed  Google Scholar 

  16. Cao W, Demeler B (2005) Modeling analytical ultracentrifugation experiments with an adaptive space-time finite element solution of the Lamm equation. Biophys J 89:1589–1602. doi:10.1529/biophysj.105.061135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brookes E, Demeler B (2006) Genetic algorithm optimization for obtaining accurate molecular weight distributions from sedimentation velocity experiments. Progr Colloid Polym Sci 131:33–40

    Article  CAS  Google Scholar 

  18. Demeler B (2005) UltraScan - a comprehensive data analysis software package for analytical ultracentrifugation experiments. In: Scott DJ, Harding SE, Rowe AJ (eds) Mod. Anal. Ultracentrifugation Tech. Methods. Royal Society of Chemistry, London. pp 210–229

    Google Scholar 

  19. Demeler B, van Holde KE (2004) Sedimentation velocity analysis of highly heterogeneous systems. Anal Biochem 335:279–288. doi:10.1016/j.ab.2004.08.039

    Article  CAS  PubMed  Google Scholar 

  20. Rogge RA, Kalashnikova AA, Muthurajan UM et al (2013) Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA. J Vis Exp. doi:10.3791/50354

    PubMed  PubMed Central  Google Scholar 

  21. Muthurajan UM, McBryant SJ, Lu X et al (2011) The linker region of macroH2A promotes self-association of nucleosomal arrays. J Biol Chem 286:23852–23864. doi:10.1074/jbc.M111.244871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lambright D, Malaby AW, Kathuria SV, et al (2013) Complementary techniques enhance the quality and scope of information obtained from SAXS. Transactions of American Crystallography Annual Meeting; July 20-24, 2013, Honolulu, HI

    Google Scholar 

  23. Dechassa ML, Wyns K, Li M et al (2011) Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes. Nat Commun 2:313. doi:10.1038/ncomms1320

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang C, van der Woerd MJ, Muthurajan UM et al (2011) Biophysical analysis and small-angle X-ray scattering-derived structures of MeCP2-nucleosome complexes. Nucleic Acids Res 39:4122–4135. doi:10.1093/nar/gkr005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petoukhov MV, Franke D, Shkumatov AV et al (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45:342–350. doi:10.1107/S0021889812007662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886. doi:10.1016/S0006-3495(99)77443-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–28

    Google Scholar 

  28. Wriggers W, Milligan RA, McCammon JA (1999) Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J Struct Biol 125:185–195. doi:10.1006/jsbi.1998.4080

    Article  CAS  PubMed  Google Scholar 

  29. Wriggers W, Chacón P (2001) Using Situs for the registration of protein structures with low-resolution bead models from X-ray solution scattering. J Appl Crystallogr 34:773–776. doi:10.1107/S0021889801012869

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolin Luger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chassé, M.H. et al. (2017). Biochemical and Biophysical Methods for Analysis of Poly(ADP-Ribose) Polymerase 1 and Its Interactions with Chromatin. In: Tulin, A. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 1608. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6993-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6993-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6992-0

  • Online ISBN: 978-1-4939-6993-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics