Skip to main content

Lassa Virus Reverse Genetics

  • Protocol
  • First Online:
Reverse Genetics of RNA Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1602))

Abstract

The Old World (OW) arenavirus Lassa (LASV ) is estimated to infect several hundred thousand people yearly in West Africa, resulting in high numbers of Lassa fever (LF), a viral hemorrhagic fever (HF) disease associated with high morbidity and mortality. To date, no licensed vaccines are available to LASV infections, and anti-LASV drug therapy is limited to an off-label use of ribavirin (Rib) that is only partially effective. The development of reverse genetics has provided investigators with a novel and powerful approach for the investigation of the molecular, cell biology, and pathogenesis of LASV. The use of cell-based LASV minigenome (MG) systems has allowed examining the cis- and trans-acting factors involved in genome replication and gene transcription and the identification of novel drugable LASV targets. Likewise, it is now feasible to rescue infectious recombinant (r)LASV entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify antiviral drugs against LASV and the implementation of novel strategies to develop live-attenuated vaccines (LAV). In this chapter we will summarize the state-of-the-art experimental procedures for implementation of LASV reverse genetics. In addition, we will briefly discuss some significant translational research developments that have been made possible upon the development of LASV reverse genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchmeier MJ, Peter CJ, de la Torre JC (2007) Arenaviridae: the viruses and their replication. Lippincott William and Wilkins, Philadelphia, PA

    Google Scholar 

  2. Radoshitzky SR et al (2015) Past, present, and future of arenavirus taxonomy (Translated from Eng). Arch Virol 160(7):1851–1874. (in Eng)

    Article  CAS  PubMed  Google Scholar 

  3. Enria DA, Briggiler AM, Sanchez Z (2008) Treatment of Argentine hemorrhagic fever. Antivir Res 78(1):132–139

    Article  CAS  PubMed  Google Scholar 

  4. Barton LL, Mets MB, Beauchamp CL (2002) Lymphocytic choriomeningitis virus: emerging fetal teratogen. Am J Obstet Gynecol 187(6):1715–1716

    Article  PubMed  Google Scholar 

  5. Fischer SA et al (2006) Transmission of lymphocytic choriomeningitis virus by organ transplantation. N Engl J Med 354(21):2235–2249

    Article  CAS  PubMed  Google Scholar 

  6. Borio L et al (2002) Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA 287(18):2391–2405

    Article  PubMed  Google Scholar 

  7. Birmingham K, Kenyon G (2001) Lassa fever is unheralded problem in West Africa. Nat Med 7(8):878

    Article  CAS  PubMed  Google Scholar 

  8. Gunther S, Lenz O (2004) Lassa virus. Crit Rev Clin Lab Sci 41(4):339–390

    Article  PubMed  Google Scholar 

  9. Richmond JK, Baglole DJ (2003) Lassa fever: epidemiology, clinical features, and social consequences (Translated from Eng). BMJ 327(7426):1271–1275. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Briese T et al (2009) Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa (Translated from Eng). PLoS Pathog 5(5):e1000455. (in Eng)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Freedman DO, Woodall J (1999) Emerging infectious diseases and risk to the traveler. Med Clin North Am 83(4):865–883. v

    CAS  PubMed  Google Scholar 

  12. Damonte EB, Coto CE (2002) Treatment of arenavirus infections: from basic studies to the challenge of antiviral therapy. Adv Virus Res 58:125–155

    Article  CAS  PubMed  Google Scholar 

  13. Lee KJ, Novella IS, Teng MN, Oldstone MB, de La Torre JC (2000) NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 74(8):3470–3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Perez M, Craven RC, de la Torre JC (2003) The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci U S A 100(22):12978–12983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L (2012) Self-association of lymphocytic choriomeningitis virus nucleoprotein is mediated by its N-terminal region and is not required for its anti-interferon function (Translated from Eng). J Virol 86(6):3307–3317. (in Eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L (2011) The C-terminal region of lymphocytic choriomeningitis virus nucleoprotein contains distinct and segregable functional domains involved in NP-Z interaction and counteraction of the type I interferon response. J Virol 85(24):13038–13048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pythoud C et al (2012) Arenavirus nucleoprotein targets interferon regulatory factor-activating kinase IKKepsilon. J Virol 86(15):7728–7738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinez-Sobrido L et al (2009) Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 83(21):11330–11340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinez-Sobrido L, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre JC (2007) Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J Virol 81(22):12696–12703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martinez-Sobrido L, Zuniga EI, Rosario D, Garcia-Sastre A, de la Torre JC (2006) Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 80(18):9192–9199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Borrow P, Martinez-Sobrido L, de la Torre JC (2010) Inhibition of the type I interferon antiviral response during arenavirus infection. Viruses 2(11):2443–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pythoud C, Rothenberger S, Martinez-Sobrido L, de la Torre JC, Kunz S (2015) Lymphocytic choriomeningitis virus differentially affects the virus-induced type I interferon response and mitochondrial apoptosis mediated by RIG-I/MAVS (Translated from Eng). J Virol 89(12):6240–6250. (in Eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodrigo WW et al (2012) Arenavirus nucleoproteins prevent activation of nuclear factor kappa B. J Virol 86(15):8185–8197

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kunz S, Borrow P, Oldstone MB (2002) Receptor structure, binding, and cell entry of arenaviruses. Curr Top Microbiol Immunol 262:111–137

    CAS  PubMed  Google Scholar 

  25. Radoshitzky SR et al (2007) Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446(7131):92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Capul AA et al (2007) Arenavirus Z-glycoprotein association requires Z myristoylation but not functional RING or late domains. J Virol 81(17):9451–9460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Emonet SE, Urata S, de la Torre JC (2011) Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology 411(2):416–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ortiz-Riano E, Cheng BY, de la Torre JC, Martinez-Sobrido L (2012) D471G mutation in LCMV-NP affects its ability to self-associate and results in a dominant negative effect in viral RNA synthesis. Viruses 4(10):2137–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ortiz-Riano E, Cheng BY, Carlos de la Torre J, Martinez-Sobrido L (2013) Arenavirus reverse genetics for vaccine development. J Gen Virol 94(Pt 6):1175–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheng BY, Ortiz-Riano E, de la Torre JC, & Martinez-Sobrido L (2013) Generation of recombinant arenavirus for vaccine development in FDA-approved Vero cells. J Vis Exp (78)

    Google Scholar 

  31. Cheng BY, Ortiz-Riano E, Nogales A, de la Torre JC, Martinez-Sobrido L (2015) Development of live-attenuated arenavirus vaccines based on codon deoptimization. J Virol 89(7):3523–3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodrigo WW, de la Torre JC, Martinez-Sobrido L (2011) Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J Virol 85(4):1684–1695

    Article  CAS  PubMed  Google Scholar 

  33. Emonet SF, Garidou L, McGavern DB, de la Torre JC (2009) Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. Proc Natl Acad Sci U S A 106(9):3473–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng BY, Ortiz-Riano E, de la Torre JC, Martinez-Sobrido L (2015) Arenavirus genome rearrangement for the development of live-attenuated vaccines (Translated from Eng). J Virol 89(14):7373–7384. (in Eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ortiz-Riano E et al (2014) Inhibition of arenavirus by A3, a pyrimidine biosynthesis inhibitor (Translated from Eng). J Virol 88(2):878–889. (in eng)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Flatz L et al (2010) Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity. Nat Med 16(3):339–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yun NE et al (2013) Mice lacking functional STAT1 are highly susceptible to lethal infection with Lassa virus (Translated from Eng). J Virol 87(19):10908–10911. (in Eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Emonet SF et al (2011) Rescue from cloned cDNAs and in vivo characterization of recombinant pathogenic Romero and live-attenuated Candid #1 strains of Junin virus, the causative agent of Argentine hemorrhagic fever disease. J Virol 85(4):1473–1483

    Article  CAS  PubMed  Google Scholar 

  39. Halfmann P et al (2009) Replication-deficient ebolavirus as a vaccine candidate. J Virol 83(8):3810–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Albarino CG et al (2011) Efficient rescue of recombinant Lassa virus reveals the influence of S segment noncoding regions on virus replication and virulence. J Virol 85(8):4020–4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

LASV research in L. M-S laboratory was funded by the NIH grant 1R21AI119775-01 and by the University of Rochester Drug Discovery Pilot Award Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Martínez-Sobrido or Juan Carlos de la Torre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Martínez-Sobrido, L., Paessler, S., de la Torre, J.C. (2017). Lassa Virus Reverse Genetics. In: Perez, D. (eds) Reverse Genetics of RNA Viruses. Methods in Molecular Biology, vol 1602. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6964-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6964-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6962-3

  • Online ISBN: 978-1-4939-6964-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics