Skip to main content

Quantitative Ratiometric Ca2+ Imaging to Assess Cell Viability

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1601))

Abstract

Viability of cells is strongly related to their Ca2+ homeostasis. Ca2+ signal fluctuations can be on a slow time scale, e.g., in non-excitable cells, but also in the range of tens of milliseconds for excitable cells, such as nerve and muscle. Muscle fibers respond to electrical stimulation with Ca2+ transients that exceed their resting basal level about 100 times. Fluorescent Ca2+ dyes have become an indispensable means to monitor Ca2+ fluctuations in living cells online. Fluorescence intensity of such “environmental dyes” relies on a buffer-ligand interaction which is not only governed by laws of mass action but also by binding and unbinding kinetics that have to be considered for proper Ca2+ kinetics and amplitude validation. The concept of Ca2+ dyes including the different approaches using ratiometric and non-ratiometric dyes, the way to correctly choose dyes according to their low-/high-affinity properties and kinetics as well as staining techniques, and in situ calibration are reviewed and explained. We provide detailed protocols to apply ratiometric Fura-2 imaging of resting Ca2+ and Ca2+ fluctuations during field-stimulation in single isolated skeletal muscle cells and how to translate fluorescence intensities into absolute Ca2+ concentrations using appropriate calibration techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berchtold MW, Brinkmeier H, Müntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80(3):1215–1265

    CAS  PubMed  Google Scholar 

  2. Barros LF, Castro J, Bittner CX (2002) Ion movements in cell death: from protection to execution. Biol Res 35(2):209–214

    CAS  PubMed  Google Scholar 

  3. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  4. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79(4):1089–1125

    CAS  PubMed  Google Scholar 

  6. Pawley J (ed) (2006) Handbook of biological confocal microscopy, 3rd edn. New York, Springer

    Google Scholar 

  7. Kao JP, Tsien RY (1988) Ca2+ binding kinetics of Fura-2 and azo-1 from temperature relaxation measurements. Biophys J 53(4):635–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jackson AP, Timmermann MP, Bagshaw CR, Ashley CC (1987) The kinetics of calcium binding to Fura-2 and indo-1. FEBS Lett 216(1):35–39

    Article  CAS  PubMed  Google Scholar 

  9. Rüdiger S (2014) Stochastic models of intracellular calcium signals. Phys Rep 534:39–87

    Article  Google Scholar 

  10. Kong CHT, Laver DR, Cannell MB (2013) Extraction of sub-microscopic Ca fluxes from blurred and noisy fluorescent indicator images with a detailed model fitting approach. PLoS Comput Biol 9(2):e1002931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eberhard M, Erne P (1989) Kinetics of calcium binding to Fluo-3 determined by stopped-flow fluorescence. Biochem Biophys Res Comm 163(1):309–314

    Article  CAS  PubMed  Google Scholar 

  12. Bruton JD, Cheng AJ, Westerblad H (2012) Methods to detect Ca2+ in living cells. In: Islam MS (ed) Calcium signaling, advances in experimental medicine and biology 740. Springer, Dordrecht, pp 27–43

    Google Scholar 

  13. Rios E, Stern MD, Gonzalez A, Pizarro G, Shirokova N (1999) Calcium release flux underlying Ca2+ sparks of frog skeletal muscle. J Gen Physiol 114:31–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sano M, Yokota T, Endo T, Tsukagoshi H (1990) A developmental change in the content of parvalbumin in normal and dystrophic mouse (mdx) muscle. J Neruol Sci 97:261–272

    Google Scholar 

  15. Jiang Y, Julian FJ (1997) Pacing rate, halothane, and BDM affect Fura 2 reporting of [Ca2+] in intact rat trabeculae. Am J Physiol 273:C2046–C2056

    CAS  PubMed  Google Scholar 

  16. Bakker AJ, Head SI, Williams DA, Stephenson DG (1993) Ca2+ levels in myotubes grown from the skeletal muscle dystrophic (mdx) and normal mice. J Physiol 460:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedrich O, Reiling SJ, Wunderlich J, Rohrbach P (2014) Assessment of Plasmodium falciparum PfMDR1 transport rates using Fluo-4. J Cell Mol Med 18(9):1851–1862

    Google Scholar 

  18. Launikonis BS, Stephenson DG, Friedrich O (2009) Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscle. J Physiol 587(10):2299–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bakker A, Head SI, Stephenson DG (1997) Time course of calcium transients derived from Fura-2 fluorescence measurements in single fast twitch fibres of adult mice and rat myotubes developing in primary culture. Cell Calcium 21(5):359–364

    Article  CAS  PubMed  Google Scholar 

  20. Head SI, Chan S, Houwelling PJ, Quinlan KGR, Murphy R, Wagner S, Friedrich O, North KN (2015) Altered Ca2+ kinetics associated with α-actinin-3 deficiency may explain positive selection for ACTN3 null allele in human evolution. PLoS Genet 11(2):e1004862

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baylor SM, Hollingworth S (1988) Fura-2 calcium transients in frog skeletal muscle fibres. J Physiol 403:151–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Head SI (1990) Membrane potential, resting calcium and calcium transients in isolated muscle fibres from normal and dystrophic mice. J Physiol 469:11–19

    Article  Google Scholar 

  23. Sherman-Gold R (Ed.) (1993) The axon guide for electrophysiology and biophysics laboratory techniques. Axon Instruments, Foster City (http://www.imbb.forth.gr/images/facilities/Cells_Animals/Electrophysiology%20Unit/Axon_Guide.pdf)

Download references

Acknowledgments

Supported by mobility funds through the German Academic Exchange Service (DAAD) to OF and the Universities Australia scheme to SIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Friedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Friedrich, O., Head, S.I. (2017). Quantitative Ratiometric Ca2+ Imaging to Assess Cell Viability. In: Gilbert, D., Friedrich, O. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 1601. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6960-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6960-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6959-3

  • Online ISBN: 978-1-4939-6960-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics