Skip to main content

Mass Spectrometric Analysis of Lipid Hydroperoxides

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Neuromethods ((NM,volume 125))

Abstract

Lipids are biomolecules prone to oxidative modifications. In the brain and central nervous system lipids are rich in unsaturated lipids, thus being preferential target for oxidative modifications. Lipid hydroperoxides are the primary products of lipid oxidation, and have been detected in neurodegenerative and neurological disorders. Mass spectrometry-based analytical approaches are nowadays recognized as valuable tools for the identification and quantification of lipid hydroperoxides in specific lipid classes, essential to understand their role in disease onset and progression. Here, we describe the most popular procedure for the lipid extracts from tissues, quantification of total phospholipid content, and quantification of the total content in lipid hydroperoxides. The interpretation of the electrospray mass spectra and tandem mass spectra of lipid hydroperoxides is also explained, exemplified for the case of cardiolipin hydroperoxides molecular species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galbusera C, Facheris M, Magni F, Galimberti G, Sala G, Tremolada L, Isella V, Guerini FR, Appollonio I, Galli-Kienle M, Ferrarese C (2004) Increased susceptibility to plasma lipid peroxidation in Alzheimer disease patients. Curr Alzheimer Res 1(2)103–109

    Article  CAS  PubMed  Google Scholar 

  2. Sanyal J, Bandyopadhyay SK, Banerjee TK, Mukherjee SC, Chakraborty DP, Ray BC, Rao VR (2009) Plasma levels of lipid peroxides in patients with Parkinson’s disease. Eur Rev Med Pharmacol Sci 13(2)129–132

    CAS  PubMed  Google Scholar 

  3. Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, Morrow JD (2002) Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33(5)620–626

    Article  CAS  PubMed  Google Scholar 

  4. Tyurina YY, Am P, Maciel E, Tyurin VA, Kapralova VI, Winnica DE, Vikulina AS, Domingues MR, McCoy J, Sanders LH, Bayir H, Greenamyre JT, Kagan VE (2015) LC/MS analysis of cardiolipin in substancia nigra and plasma of rotenone-treated rats: Implication for mitochondrial dysfunction in Parkinson’s disease. Free Radic Res 49(5)681–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yousefi B, Ahmadi Y, Ghorbanihaqhjo A, Faghfoori Z, Irannejad VS (2014) Serum arsenic and lipid peroxidation levels in patients with multiple sclerosis. Biol Trace Elem Res 158(3)276–279

    Article  CAS  PubMed  Google Scholar 

  6. Tully M, Zheng L, Shi R (2014) Acrolein detection: potential theranostic utility in multiple sclerosis and spinal cord injury. Expert Rev Neurother 14(6)679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dietrich-Muszalska A, Kontek B (2010) Lipid peroxidation in patients with schizophrenia. Physchiatry Clin Neurosci 64(5)469–475

    Article  CAS  Google Scholar 

  8. Hatch J, Andreazza A, Olowoyeye O, Rezin GT, Moody A, Goldtein BI (2015) Cardiovascular and psychiatric characteristics associated with oxidative stress markers among adolescents with bipolar disorder. J Psychosom Res 79(3)222–227

    Article  PubMed  Google Scholar 

  9. Faria R, Santana MM, Aveleira CA, Simões C, Maciel E, Melo T, Santinha D, Oliveira MM, Peixoto F, Domingues P, Cavadas C, Domingues MR (2014) Alterations in phospholipidomic profile in brain of mouse model of depression induced by chronic unpredictable stress. Neuroscience 273:1–11

    Article  CAS  PubMed  Google Scholar 

  10. Reis A, Spickett CM (2012) Chemistry of phospholipid oxidation. Biochim Biophys Acta 1818(10)2374–2387

    Article  CAS  PubMed  Google Scholar 

  11. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438

    Article  PubMed  PubMed Central  Google Scholar 

  12. MacMillan DK, Murphy RC (1995) Analysis of lipid hydroperoxides and long-chain conjugated keto acids by negative ion electrospray mass spectrometry. J Am Soc Mass Spectrom 6(12)1190–1201

    Article  CAS  PubMed  Google Scholar 

  13. Hall LM, Murphy RC (1998) Electrospray mass spectrometric analysis of 5-hydroperoxy and 5-hydroxyeicosatetraenoic acids generated by lipid peroxidation of red blood cell ghost phospholipids. J Am Soc Mass Spectrom 9(5)527–532

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura T, Bratton DL, Murphy RC (1997) Analysis of epoxyeicosatrienoic and monohydroxyeicosatetraenoic acids esterified to phospholipids in human red blood cells by electrospray tandem mass spectrometry. J Mass Spectrom 32(8)888–896

    Article  CAS  PubMed  Google Scholar 

  15. Adachi J, Matsushita S, Yoshioka N, Funae R, Fujita T, Higuchi S, Ueno Y (2004) Plasma phosphatidylcholine hydroperoxide as a new marker of oxidative stress in alcoholic patients. J Lipid Res 45(5)967–971

    Article  CAS  PubMed  Google Scholar 

  16. Reis A, Domingues MR, Amado FM, Ferrer-Correia AJ, Domingues P (2007) Radical peroxidation of palmitoyl-linoleoyl-glycerophosphocholine liposomes: Identification of long-chain oxidized products by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 855(2)186–199

    Article  CAS  PubMed  Google Scholar 

  17. Reis A, Domingues P, Domingues MR (2013) Structural motifs in primary oxidation products of palmitoyl-arachidonoyl-phosphatidylcholines by LC-MS/MS. J Mass Spectrom 48(11)1207–1216

    Article  CAS  PubMed  Google Scholar 

  18. Melo T, Santos N, Lopes D, Alves E, Maciel E, Faustino MA, Tomé JP, Neves MG, Almeida A, Domingues P, Segundo MA, Domingues MR (2013) Photosensitized oxidation of phosphatidylethanolamine monitored by electrospray tandem mass spectrometry. J Mass Spectrom 48(12)1357–1365

    Article  CAS  PubMed  Google Scholar 

  19. Bayir H, Tyurin VA, Tyurina YY, Viner R, Ritov V, Amoscato AA, Zhao Q, Zhang XJ, Janesko-Feldman KL, Alexander H, Basova LV, Clark RS, Kochanek PM, Kagan VE (2007) Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis. Ann Neurol 62(2)154–169

    Article  CAS  PubMed  Google Scholar 

  20. Tyurin VA, Tyurina YY, Jung MY, Tungekar MA, Wasserloss KJ, Bayir H, Greenberger JS, Kochanek PM, Shvedova AA, Pitt B, Kagan VE (2009) Mass-spectrometric analysis of hydroperoxy- and hydroxyl-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. J Chromatogr B Analyt Technol Biomed Life Sci 877(26)2863–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tyurina YY, Tyurin VA, Kanyar AM, Kapralova VI, Wasserloss K, Li J, Mosher M, Wright L, Wipf P, Watkins S, Pitt BR, Kagan VE (2010) Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation. Am J Physiol Lung Cell Mol Physiol 299(1)L73–L85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Couto D, Santinha D, Melo T, Ferreira-Fernandes E, Videira RA, Campos A, Fardilha M, Domingues P, Domingues MR (2015) Glycosphingolipids and oxidative stress: Evaluation of hydroxyl radical oxidation of galactosyl and lactosylceramides using mass spectrometry. Chem Phys Lipids 191:106–114

    Article  CAS  PubMed  Google Scholar 

  23. Adachi J, Kudo R, Ueno Y, Hunter R, Rajendram R, Want E, Preedy VR (2001) Heart 7-hydroperoxycholesterol and oxysterols are elevated in chronically ethanol-fed rats. J Nutr 131(11)2916–2920

    CAS  PubMed  Google Scholar 

  24. Harkewicz R, Hartvigsen K, Almazan F, Dennis EA, Witztum JL, Miller YI (2008) Cholesteryl ester hydroperoxides are biologically active components of minimally oxidized low density lipoprotein. J Biol Chem 283(16)10241–10251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giuffrida F, Destaillats F, Skibsted LH, Dionisi F (2004) Structural analysis of hydroperoxy- and epoxy-triacylglucerols by liquid chromatography mass spectrometry. Chem Phys Lipids 131(1)41–49

    Article  CAS  PubMed  Google Scholar 

  26. Monteiro-Cardoso VF, Oliveira MM, Melo T, Domingues MR, Moreira PI, Ferreiro E, Peixoto F, Videira RA (2015) Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer’s disease. J Alzheimers Dis 43(4)1375–1392

    CAS  PubMed  Google Scholar 

  27. Ji J, Baart S, Vikulina AS, Clark RS, Anthonymuthu TS, Tyurin VA, Du L, St Croix CM, Tyurina YY, Lewis J, Skoda EM, Kline AE, Kochanek PM, Wipf P, Kagan VE, Bayir H (2015) Deciphering of mitochondrial cardiolipin oxidative signaling in cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 35(2)319–328

    Article  CAS  PubMed  Google Scholar 

  28. Tyurin VA, Tyurina YY, Feng W, Mnuskin A, Jiang J, Tang M, Zhang X, Zhao Q, Kochanek PM, Clark RS, Bayir H, Kagan VE (2008) Mass-spectrometric characterization of phospholipids and their primary peroxidation products in rat cortical neurons during staurosporine-induced apoptosis. J Neurochem 107(6)1612–1633

    Article  Google Scholar 

  29. Reis A, Domingues P, Ferrer-Correia AJ, Domingues MR (2004) Tandem mass spectrometry of intact oxidation products of diacylphosphatidylcholines: evidence for the occurrence of the oxidation of the phosphocholine head and differentiation of isomers. J Mass Spectrom 39(12)1513–1522

    Article  CAS  PubMed  Google Scholar 

  30. Maciel E, Domingues P, Domingues MR (2011) Liquid Chromatography/tandem mass spectrometry analysis of long-chain oxidation products of cardiolipin induced by the hydroxyl radical. Rapid Commun Mass Spectrom 25(2)316–326

    Article  CAS  PubMed  Google Scholar 

  31. Hall LM, Murphy RC (1998) Analysis of stable oxidized molecular species of glycerophospholipids following treatment of red blood cell ghosts with t-butylhydroperoxide. Anal Biochem 258(2)184–194

    Article  CAS  PubMed  Google Scholar 

  32. Bligh EG, Dyer WG (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8)911–917

    Article  CAS  PubMed  Google Scholar 

  33. Bartlett E, Lewis D (1970) Spectrophotometric determination of phosphate esters in the presence and absence of orthophosphate. Anal Biochem 36(1)159–167

    Article  CAS  PubMed  Google Scholar 

  34. Hanahan DJ (1997) Choline-containing phospholipids: diacyl-, alkylacyl-, and alkenylacylcholine phosphoglycerides and sphingomyelin. In: A guide to phospholipid chemistry. Oxford University Press, New York, pp 61–130

    Google Scholar 

  35. Jiang ZY, Woollard AC, Wolff SP (1991) Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids 26(10)853–856

    Article  CAS  PubMed  Google Scholar 

  36. Kim J, Minkler PE, Salomon RG, Anderson VE, Hoppel CL (2011) Cardiolipin: characterization of distinct oxidized molecular species. J Lipid Res 52(1)125–135

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks are due to University of Aveiro, Fundação para a Ciência e Tecnologia (FCT, Portugal)/MEC, European Union, QREN, and COMPETE, for funding the QOPNA research unit (PEst-C/QUI/UI0062/2013), and CESAM (UID/AMB/50017/2013), through national founds and where applicable co-financed by the FEDER, within the PT2020 Partnership Agreement, and also to the Portuguese National Mass Spectrometry Network , RNEM, (REDE/1504/REM/2005). Tânia Melo (SFRH/BD/84691/2012), Elisabete Maciel (SFRH/BPD/104165/2014), and Ana Reis (SFRH/BPD/101916/2014) are grateful to FCT for their grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rosário M. Domingues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Melo, T., Maciel, E., Reis, A., Domingues, P., Domingues, M.R.M. (2017). Mass Spectrometric Analysis of Lipid Hydroperoxides. In: Wood, P. (eds) Lipidomics. Neuromethods, vol 125. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6946-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6946-3_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6944-9

  • Online ISBN: 978-1-4939-6946-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics