Skip to main content

Coupling of Flagellar Gene Expression with Assembly in Salmonella enterica

  • Protocol
  • First Online:
The Bacterial Flagellum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

Abstract

There are more than 70 genes in the flagellar and chemosensory regulon of Salmonella enterica. These genes are organized into a transcriptional hierarchy of three promoter classes. At the top of the transcriptional hierarchy is the flhDC operon, also called the flagellar master operon, which is transcribed from the flagellar class 1 promoter region. The protein products of the flhDC operon form a hetero-multimeric complex, FlhD4C2, which directs σ70 RNA polymerase to transcribe from class 2 flagellar promoters. Products of flagellar class 2 transcription are required for the structure and assembly of the hook-basal body (HBB) complex. One of the class 2 flagellar genes, fliA, encodes an alternative sigma transcription factor, σ28, which directs transcription from flagellar class 3 promoters. The class 3 promoters direct transcription of gene products needed after HBB completion including the motor force generators, the filament, and the chemosensory genes. Flagellar gene transcription is coupled to assembly at the level of hook-basal body completion. Two key proteins, σ28 and FliT, play assembly roles prior to HBB completion and upon HBB completion act as positive and negative regulators, respectively. HBB completion signals a secretion-specificity switch in the flagellar type III secretion system, which results in the secretion of σ28 and FliT antigonists allowing these proteins to perform their roles in transcriptional regulation of flagellar genes. Genetic methods have provided the principle driving forces in our understanding of how flagellar gene expression is controlled and coupled to the assembly process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kutsukake K, Ohya Y, Iino T (1990) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172:741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shi W, Zhou Y, Wild J, Adler J, Gross CA (1992) DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol 174:6256–6263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wei BL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, Romeo T (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40:245–256

    Article  CAS  PubMed  Google Scholar 

  4. Yokota T, Gots JS (1970) Requirement of adenosine 3′, 5′-cyclic phosphate for flagellar formation in Escherichia coli and Salmonella typhimurium. J Bacteriol 103:513–516

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Singer HM, Kuhne C, Deditius JA, Hughes KT, Erhardt M (2014) The Salmonella Spi1 virulence regulatory protein HilD directly activates transcription of the flagellar master operon flhDC. J Bacteriol 196:1448–1457

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rappleye CA, Roth JR (1997) A Tn10 derivative (T-POP) for isolation of insertions with conditional (tetracycline-dependent) phenotypes. J Bacteriol 179:5827–5834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wozniak CE, Lee C, Hughes KT (2009) T-POP array identifies EcnR and PefI-SrgD as novel regulators of flagellar gene expression. J Bacteriol 191:1498–1508

    Article  CAS  PubMed  Google Scholar 

  8. Erhardt M, Hughes KT (2010) C-ring requirement in flagellar type III secretion is bypassed by FlhDC upregulation. Mol Microbiol 75:376–393

    Article  CAS  PubMed  Google Scholar 

  9. Takaya A, Erhardt M, Karata K, Winterberg K, Yamamoto T, Hughes KT (2012) YdiV: a dual function protein that targets FlhDC for ClpXP-dependent degradation by promoting release of DNA-bound FlhDC complex. Mol Microbiol 83:1268–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sato Y, Takaya A, Mouslim C, Hughes KT, Yamamoto T (2014) FliT selectively enhances proteolysis of FlhC subunit in FlhD4C2 complex by an ATP-dependent protease ClpXP. J Biol Chem 289:33001–33011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hughes KT, Gillen KL, Semon MJ, Karlinsey JE (1993) Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:1277–1280

    Article  CAS  PubMed  Google Scholar 

  12. Kutsukake K (1994) Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium. Mol Gen Genet 243:605–612

    CAS  PubMed  Google Scholar 

  13. Yamamoto S, Kutsukake K (2006) FliT acts as an anti-FlhD2C2 factor in the transcriptional control of the flagellar regulon in Salmonella enterica serovar Typhimurium. J Bacteriol 188:6703–6708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohnishi K, Kutsukake K, Suzuki H, Iino T (1990) Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol Gen Genet 221:139–147

    Article  CAS  PubMed  Google Scholar 

  15. Gillen KL, Hughes KT (1993) Transcription from two promoters and autoregulation contribute to the control of expression of the Salmonella typhimurium flagellar regulatory gene flgM. J Bacteriol 175:7006–7015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohnishi K, Kutsukake K, Suzuki H, Iino T (1992) A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an antisigma factor inhibits the activity of the flagellum-specific sigma factor, sigma F. Mol Microbiol 6:3149–3157

    Article  CAS  PubMed  Google Scholar 

  17. Kutsukake K, Ide N (1995) Transcriptional analysis of the flgK and fliD operons of Salmonella typhimurium which encode flagellar hook-associated proteins. Mol Gen Genet 247:275–281

    Article  CAS  PubMed  Google Scholar 

  18. Erhardt M, Singer HM, Wee DH, Keener JP, Hughes KT (2011) An infrequent molecular ruler controls flagellar hook length in Salmonella enterica. EMBO J 30:2948–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Minamino T, Gonzalez-Pedrajo B, Yamaguchi K, Aizawa S, Macnab RM (1999) FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol Microbiol 34:295–304

    Article  CAS  PubMed  Google Scholar 

  20. Minamino T, Ferris HU, Moriya N, Kihara M, Namba K (2006) Two parts of the T3S4 domain of the hook-length control protein FliK are essential for the substrate specificity switching of the flagellar type III export apparatus. J Mol Biol 362:1148–1158

    Article  CAS  PubMed  Google Scholar 

  21. Fraser GM, Hirano T, Ferris HU, Devgan LL, Kihara M, Macnab RM (2003) Substrate specificity of type III flagellar protein export in Salmonella is controlled by subdomain interactions in FlhB. Mol Microbiol 48:1043–1057

    Article  CAS  PubMed  Google Scholar 

  22. Casadaban MJ, Chou J (1984) In vivo formation of gene fusions encoding hybrid beta-galactosidase proteins in one step with a transposable Mu-lac transducing phage. Proc Natl Acad Sci U S A 81:535–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A 76:4530–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Groisman EA (1991) In vivo genetic engineering with bacteriophage Mu. Methods Enzymol 204:180–212

    Article  CAS  PubMed  Google Scholar 

  25. Hughes KT, Roth JR (1984) Conditionally transposition-defective derivative of Mu d1(Amp Lac). J Bacteriol 159:130–137

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hughes KT, Roth JR (1985) Directed formation of deletions and duplications using Mud(Ap, lac). Genetics 109:263–282

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hughes KT, Roth JR (1988) Transitory cis complementation: a method for providing transposition functions to defective transposons. Genetics 119:9–12

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gillen KL, Hughes KT (1991) Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium. J Bacteriol 173:2301–2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee HJ, Hughes KT (2006) Posttranscriptional control of the Salmonella enterica flagellar hook protein FlgE. J Bacteriol 188:3308–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lederberg J (1956) Linear inheritance in transductional clones. Genetics 41:845–871

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lederberg J, Iino T (1956) Phase variation in Salmonella. Genetics 41:743–757

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stocker BAD (1956) Abortive transduction of motility in Salmonella; a non-replicated gene transmitted through many generations to a single descendant. J Gen Microbiol 15:575–598

    Article  CAS  PubMed  Google Scholar 

  33. Ozeki H (1956) Abortive transduction in purine-requiring mutants of Salmonella typhimurium. Carnegie Institute of Washington, Genetic Studies of Bacteria, Publication 612:97–106

    Google Scholar 

  34. Benson NR, Roth JR (1997) A Salmonella phage-P22 mutant defective in abortive transduction. Genetics 145:17–27

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  36. Maloy SR (1990) Experimental techniques in bacterial genetics. Jones and Bartlett, Boston, MA

    Google Scholar 

  37. Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  38. Simm R, Remminghorst U, Ahmad I, Zakikhany K, Romling U (2009) A role for the EAL-like protein STM1344 in regulation of CsgD expression and motility in Salmonella enterica serovar Typhimurium. J Bacteriol 191:3928–3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Winkler ME (1979) Ribosomal ribonucleic acid isolated from Salmonella typhimurium: absence of the intact 23S species. J Bacteriol 139:842–849

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Aubee JI, Olu M, Thompson KM (2016) The i6A37 tRNA modification is essential for proper decoding of UUX-Leucine codons during RpoS and IraP translation. RNA 22:729–742

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by PHS grant GM056141 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly T. Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chevance, F.F.V., Hughes, K.T. (2017). Coupling of Flagellar Gene Expression with Assembly in Salmonella enterica . In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics