Skip to main content

Fluorescent Microscopy Techniques to Study Hook Length Control and Flagella Formation

  • Protocol
  • First Online:
The Bacterial Flagellum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

Abstract

The bacterial flagellum is a sophisticated motility device made of about 30 different proteins and consists of three main structural parts: (1) a membrane-embedded basal body, (2) a flexible linking structure (the hook) that connects the basal body to, (3) the rigid filament that extends up to 10 μm from the cell surface. In Salmonella enterica serovar Typhimurium, the hook structure is controlled to a length of 55 nm by a molecular ruler protein, FliK. Only upon hook completion, FliK induces a switch in substrate specificity of the flagellar export apparatus, which allows secretion of filament-type substrates, such as flagellin. Up to 20,000 subunits of flagellin assemble one flagellar filament that extends several micrometers beyond the cell surface. The formation of hook and filament structures as hallmarks of the hook length control mechanism can be monitored by immunofluorescence microscopy as described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Chevance FFV, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455–465

    Article  CAS  PubMed  Google Scholar 

  2. Chevance FFV, Takahashi N, Karlinsey JE, Gnerer J, Hirano T, Samudrala R, Aizawa S, Hughes KT (2007) The mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution. Genes Dev 21:2326–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cohen EJ, Hughes KT (2014) Rod-to-hook transition for extracellular flagellum assembly is catalyzed by the L-ring-dependent rod scaffold removal. J Bacteriol 196:2387–2395

    Article  PubMed  PubMed Central  Google Scholar 

  4. Samatey FA, Matsunami H, Imada K, Nagashima S, Shaikh TR, Thomas DR, Chen JZ, DeRosier DJ, Kitao A, Namba K (2004) Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431:1062–1068

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi N, Mizuno S, Hirano T, Chevance FFV, Hughes KT, Aizawa S (2009) Autonomous and FliK-dependent length control of the flagellar rod in Salmonella enterica. J Bacteriol 191:6469–6472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirano T, Yamaguchi S, Oosawa K, Aizawa S (1994) Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium. J Bacteriol 176:5439–5449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Williams AW, Yamaguchi S, Togashi F, Aizawa SI, Kawagishi I, Macnab RM (1996) Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium. J Bacteriol 178:2960–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patterson-Delafield J, Martinez RJ, Stocker BA, Yamaguchi S (1973) A new fla gene in Salmonella typhimurium--flaR--and its mutant phenotype-superhooks. Arch Mikrobiol 90:107–120

    Article  CAS  PubMed  Google Scholar 

  9. Erhardt M, Hirano T, Su Y, Paul K, Wee DH, Mizuno S, Aizawa S-I, Hughes KT (2010) The role of the FliK molecular ruler in hook-length control in Salmonella enterica. Mol Microbiol 75:1272–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erhardt M, Singer HM, Wee DH, Keener JP, Hughes KT (2011) An infrequent molecular ruler controls flagellar hook length in Salmonella enterica. EMBO J 30:2948–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keener JP (2010) A molecular ruler mechanism for length control of extended protein structures in bacteria. J Theor Biol 263:481–489

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Helmholtz Association young investigator grant VH-NG-932, and the People Programme (Marie Curie Actions) of the European Union Seventh Framework Programme (grant 334030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Erhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Erhardt, M. (2017). Fluorescent Microscopy Techniques to Study Hook Length Control and Flagella Formation. In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics