Skip to main content

Analysis of Yeast Telomerase by Primer Extension Assays

  • Protocol
  • First Online:
Telomeres and Telomerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1587))

  • 1728 Accesses

Abstract

Telomeres are specialized nucleoprotein structures located at eukaryotic chromosomal termini, which are required for chromosome stability and are maintained by a reverse transcriptase named telomerase. Budding yeast has served as an extremely useful model system for analyzing telomere maintenance because the organism offers a wide range of genetic and biochemical tools. Several milestones in telomerase research have been reached through investigation of the yeast system. For example, the consequence of telomerase loss was first characterized in the budding yeast Saccharomyces cerevisiae. The catalytic component of telomerase (telomerase reverse transcriptase; TERT) was likewise initially cloned from this organism. Moreover, much of the current understanding of the structure and function of the telomerase complex was derived from yeast studies. In this chapter, we discuss one of the most useful tools for investigating yeast telomerase mechanisms and regulation: the primer extension assay. This assay can be used to examine the overall activity as well as the processivity of telomerase, which represents a unique aspect of telomerase enzymology. It can also be employed to analyze the mechanisms of telomerase regulatory proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lundblad V, Szostak JW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57:633–643

    Article  CAS  PubMed  Google Scholar 

  2. Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144:1399–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Autexier C, Lue NF (2006) The structure and function of telomerase reverse transcriptase. Annu Rev Biochem 75:493–517

    Article  CAS  PubMed  Google Scholar 

  4. Collins K (2006) The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 7:484–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    Article  CAS  PubMed  Google Scholar 

  6. Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337

    Article  CAS  PubMed  Google Scholar 

  7. Cohn M, Blackburn EH (1995) Telomerase in yeast. Science 269:396–400

    Article  CAS  PubMed  Google Scholar 

  8. Morin G (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529

    Article  CAS  PubMed  Google Scholar 

  9. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  CAS  PubMed  Google Scholar 

  10. Prescott J, Blackburn EH (1997) Telomerase RNA mutations in Saccharomyces cerevisiae alter telomerase action and reveal nonprocessivity in vivo and in vitro. Genes Dev 11:528–540

    Article  CAS  PubMed  Google Scholar 

  11. Teixera MT, Gilson E (2005) Telomere maintenance, function and evolution: the yeast paradigm. Chromosome Res 13:535–548

    Article  Google Scholar 

  12. Lue NF, Lin Y, Mian I (2003) A conserved telomerase motif within the catalytic domain of telomerase reverse transcriptase is specifically required for repeat addition processivity. Mol Cell Biol 23:8440–8449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bosoy D, Lue N (2004) Yeast telomerase is capable of limited repeat addition processivity. Nucleic Acids Res 32:93–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zappulla DC, Roberts JN, Goodrich KJ, Cech TR, Wuttke DS (2009) Inhibition of yeast telomerase action by the telomeric ssDNA-binding protein, Cdc13p. Nucleic Acids Res 37:354–367

    Article  CAS  PubMed  Google Scholar 

  15. DeZwaan DC, Freeman BC (2009) The conserved Est1 protein stimulates telomerase DNA extension activity. Proc Natl Acad Sci U S A 106:17337–17342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mozdy AD, Cech TR (2006) Low abundance of telomerase in yeast: implications for telomerase haploinsufficiency. RNA 12:1721–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lue NF, Peng Y (1997) Identification and characterization of a telomerase activity from Schizosaccharomyces pombe. Nucleic Acids Res 25:4331–4337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Friedman KL, Cech TR (1999) Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. Genes Dev 13:2863–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia J, Peng Y, Mian IS, Lue NF (2000) Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. Mol Cell Biol 20:5196–5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fulton TB, Blackburn EH (1998) Identification of Kluyveromyces lactis telomerase: discontinuous synthesis along the 30-nucleotide-long templating domain. Mol Cell Biol 18:4961–4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh S, Steinberg-Neifach O, Mian I, Lue N (2002) Analysis of telomerase in Candida albicans: potential role in telomere end protection. Eukaryot Cell 1:967–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsu M, Yu EY, Singh SM, Lue NF (2007) Mutual dependence of Candida albicans Est1p and Est3p in telomerase assembly and activation. Eukaryot Cell 6:1330–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haering CH, Nakamura TM, Baumann P, Cech TR (2000) Analysis of telomerase catalytic subunit mutants in vivo and in vitro in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 97:6367–6372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gunisova S, Elboher E, Nosek J, Gorkovoy V, Brown Y, Lucier JF, Laterreur N, Wellinger RJ, Tzfati Y, Tomaska L (2009) Identification and comparative analysis of telomerase RNAs from Candida species revel conservation of functional elements. RNA 15:546–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Toogun OA, Zeiger W, Freeman BC (2007) The p23 molecular chaperone promotes functional telomerase complexes through DNA dissociation. Proc Natl Acad Sci U S A 104:5765–5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bryan TM, Goodrich KJ, Cech TR (2000) A Mutant of Tetrahymena Telomerase Reverse Transcriptase with Increased Processivity. J Biol Chem 275:24199–24207

    Article  CAS  PubMed  Google Scholar 

  27. Peng Y, Mian IS, Lue NF (2001) Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance. Mol Cell 7:1201–1211

    Article  CAS  PubMed  Google Scholar 

  28. Minnick DT, Astatke M, Joyce CM, Kunkel TA (1996) A thumb subdomain mutant of the large fragment of Escherichia coli DNA polymerase I with reduced DNA binding affinity, processivity, and frameshift fidelity. J Biol Chem 271:24954–24961

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal F. Lue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hsu, M., Lue, N.F. (2017). Analysis of Yeast Telomerase by Primer Extension Assays. In: Songyang, Z. (eds) Telomeres and Telomerase. Methods in Molecular Biology, vol 1587. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6892-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6892-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6891-6

  • Online ISBN: 978-1-4939-6892-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics