Skip to main content

Examining Mitochondrial Function at Synapses In Situ

  • Protocol
  • First Online:
Techniques to Investigate Mitochondrial Function in Neurons

Part of the book series: Neuromethods ((NM,volume 123))

Abstract

Synaptic mitochondria are exposed to an environment quite unlike any other subcellular environment. The cytosolic proton concentration ([H+]c) in the presynaptic compartment can increase several fold within seconds during a burst of action potentials (APs) while the cytosolic free Ca2+ concentration ([Ca2+]c) can increase several fold within milliseconds of a single AP. To understand how mitochondria function under such dynamic conditions they must be examined in the context of these small synaptic compartments. Here, we describe the application of fluorescent reporters to examine mitochondrial function in situ at the Drosophila melanogaster (fruit fly) larval neuromuscular junction (NMJ). Emphasis is placed on genetically encoded fluorescent (GEF) probes, rather than chemical fluorescent probes, due to the large range of GEF-probes now available and their specificity of targeting. We describe how best to prepare NMJs for ex vivo interrogation, apply stimuli to motor axons, and collect and analyze fluorescence data. We summarize the probes that have been used successfully at the Drosophila NMJ to monitor changes in mitochondrial [Ca2+], [H+], [O2·], [ATP] and voltage across the inner mitochondrial membrane (IMM). Lastly, for those who wish to generate transgenic Drosophila to express other GEF-probes, we list useful genetic reagents and signal sequences known to be effective at targeting GEF-probes to mitochondria in Drosophila. Overall, the techniques described here should provide a starting point for a diverse array of researchers who may wish to use GEF-probes targeted to mitochondria in Drosophila either as screening tools or as reporters of mitochondrial function at synapses in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szabadkai G, Simoni A et al (2006) Mitochondrial dynamics and Ca2+ signaling. Biochim Biophys Acta 1763(5):442–449

    Article  CAS  PubMed  Google Scholar 

  2. Lee CW, Peng HB (2008) The function of mitochondria in presynaptic development at the neuromuscular junction. Mol Biol Cell 19(1):150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Helmchen F, Borst J et al (1997) Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys J 72(3):1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Macleod G, Hegström-Wojtowicz M et al (2002) Fast calcium signals in Drosophila motor neuron terminals. J Neurophysiol 88(5):2659–2663

    Article  CAS  PubMed  Google Scholar 

  5. Rossano AJ, Chouhan AK et al (2013) Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo. J Physiol 591(7):1691–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harris JJ, Jolivet R et al (2012) Synaptic energy use and supply. Neuron 75(5):762–777

    Article  CAS  PubMed  Google Scholar 

  7. Rangaraju V, Calloway N et al (2014) Activity-driven local ATP synthesis is required for synaptic function. Cell 156(4):825–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weingarten J, Laßek M et al (2014) The proteome of the presynaptic active zone from mouse brain. Mol Cell Neurosci 59:106–118

    Article  CAS  PubMed  Google Scholar 

  9. David G, Barrett JN et al (1998) Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals. J Physiol 509(1):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. David G (1999) Mitochondrial clearance of cytosolic Ca2+ in stimulated lizard motor nerve terminals proceeds without progressive elevation of mitochondrial matrix [Ca2+]. J Neurosci 19(17):7495–7506

    CAS  PubMed  Google Scholar 

  11. David G, Barrett EF (2000) Stimulation-evoked increases in cytosolic [Ca2+] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent. J Neurosci 20(19):7290–7296

    CAS  PubMed  Google Scholar 

  12. David G, Barrett EF (2003) Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J Physiol 548(2):425–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. David G, Talbot J et al (2003) Quantitative estimate of mitochondrial [Ca2+] in stimulated motor nerve terminals. Cell Calcium 33(3):197–206

    Article  CAS  PubMed  Google Scholar 

  14. Billups B, Forsythe ID (2002) Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22(14):5840–5847

    CAS  PubMed  Google Scholar 

  15. Guo X, Macleod GT et al (2005) The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47(3):379–393

    Article  CAS  PubMed  Google Scholar 

  16. Talbot J, Barrett JN et al (2007) Stimulation‐induced changes in NADH fluorescence and mitochondrial membrane potential in lizard motor nerve terminals. J Physiol 579(3):783–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen KT, García-Chacón LE et al (2009) The Ψm depolarization that accompanies mitochondrial Ca2+ uptake is greater in mutant SOD1 than in wild-type mouse motor terminals. Proc Natl Acad Sci 106(6):2007–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chouhan AK, Ivannikov MV et al (2012) Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity. J Neurosci 32(4):1233–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chouhan AK, Zhang J et al (2010) Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ. J Neurosci 30(5):1869–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lutas A, Wahlmark CJ et al (2012) Genetic analysis in Drosophila reveals a role for the mitochondrial protein p32 in synaptic transmission. G3 2(1):59–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tian L, Hires SA et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen Q, Cichon J et al (2012) Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76(2):297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rossano AJ, Macleod GT (2007) Loading Drosophila nerve terminals with calcium indicators. J Vis Exp 6:250

    Google Scholar 

  24. Macleod GT (2012) Forward-filling of dextran-conjugated indicators for calcium imaging at the Drosophila Larval NMJ. Cold Spring Harb Protoc 7:791–796

    Google Scholar 

  25. Wang W et al (2008) Superoxide flashes in single mitochondria. Cell 134:279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Michele R, Carimi F et al (2014) Mitochondrial biosensors. Int J Biochem Cell Biol 48:39–44

    Article  CAS  PubMed  Google Scholar 

  27. Ivannikov MV, Macleod GT (2013) Mitochondrial free Ca2+ levels and their effects on energy metabolism in Drosophila motor nerve terminals. Biophys J 104(11):2353–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jan L, Jan Y (1976) Properties of the larval neuromuscular junction in Drosophila melanogaster. J Physiol 262(1):189–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stewart B, Atwood H et al (1994) Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J Comp Physiol A 175(2):179–191

    Article  CAS  PubMed  Google Scholar 

  30. Feng Y, Ueda A et al (2004) A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. J Neurogenet 18(2):377–402

    Article  CAS  PubMed  Google Scholar 

  31. Hajnóczky G, Robb-Gaspers LD et al (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82(3):415–424

    Article  PubMed  Google Scholar 

  32. Scaduto RC, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76(1):469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Magrassi L, Purves D et al (1987) Fluorescent probes that stain living nerve terminals. J Neurosci 7(4):1207–1214

    CAS  PubMed  Google Scholar 

  34. Yoshikami D, Okun LM (1984) Staining of living presynaptic nerve terminals with selective fluorescent dyes. Nature 310:53–56

    Article  CAS  PubMed  Google Scholar 

  35. Reers M, Smiley ST et al (1995) Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406–417

    Article  CAS  PubMed  Google Scholar 

  36. O’Reilly CM, Fogarty KE et al (2003) Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys J 85(5):3350–3357

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gerencser AA, Chinopoulos C et al (2012) Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol 590(12):2845–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Atwood H, Govind C et al (1993) Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J Neurobiol 24(8):1008–1024

    Article  CAS  PubMed  Google Scholar 

  39. Kurdyak P, Atwood H et al (1994) Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila. J Comp Neurol 350(3):463–472

    Article  CAS  PubMed  Google Scholar 

  40. Koon AC, Ashley J et al (2011) Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling. Nat Neurosci 14(2):190–199

    Article  CAS  PubMed  Google Scholar 

  41. Hoang B, Chiba A (2001) Single-cell analysis of Drosophila larval neuromuscular synapses. Dev Biol 229:55–70

    Article  CAS  PubMed  Google Scholar 

  42. Klose MK, Chu D et al (2005) Heat shock-mediated thermoprotection of larval locomotion compromised by ubiquitous overexpression of Hsp70 in Drosophila melanogaster. J Neurophysiol 94(5):3563–3572

    Article  CAS  PubMed  Google Scholar 

  43. García-Chacón LE, Nguyen KT et al (2006) Extrusion of Ca2+ from mouse motor terminal mitochondria via a Na+–Ca2+ exchanger increases post-tetanic evoked release. J Physiol 574(3):663–675

    Article  PubMed  PubMed Central  Google Scholar 

  44. Macleod GT (2012) Imaging and analysis of nonratiometric calcium indicators at the Drosophila larval neuromuscular junction. Cold Spring Harb Protoc 7:802–809

    Google Scholar 

  45. Macleod GT (2012) Topical application of indicators for calcium imaging at the Drosophila larval NMJ. Cold Spring Harb Protoc 7:786–790

    Google Scholar 

  46. Bers DM, Patton CW et al (1994) A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol 40:3–29

    Article  CAS  PubMed  Google Scholar 

  47. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    CAS  PubMed  Google Scholar 

  48. Venken KJ, Simpson JH et al (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72(2):202–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Filippin L, Abad MC et al (2005) Improved strategies for the delivery of GFP-based Ca2+ sensors into the mitochondrial matrix. Cell Calcium 37(2):129–136

    Article  CAS  PubMed  Google Scholar 

  50. Porcelli AM, Ghelli A et al (2005) pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun 326(4):799–804

    Article  CAS  PubMed  Google Scholar 

  51. Rainey RN, Glavin JD et al (2006) A new function in translocation for the mitochondrial i-AAA protease Yme1: import of polynucleotide phosphorylase into the intermembrane space. Mol Cell Biol 26(22):8488–8497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Csordás G, Várnai P et al (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39(1):121–132

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nagai T (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98:3197–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Griesbeck O, Baird GS et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. J Biol Chem 276:29188–29194

    Article  CAS  PubMed  Google Scholar 

  55. Arnaudeau S, Kelley WL et al (2001) Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 276:29430–29439

    Article  CAS  PubMed  Google Scholar 

  56. Mank M, Santos AF et al (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5(9):805–811

    Article  CAS  PubMed  Google Scholar 

  57. Palmer A, Tsien RY (2006) Measuring calcium signaling using genetically-targetable fluorescent indicators. Nat Protoc 1:1057–1061

    Article  CAS  PubMed  Google Scholar 

  58. Abad MCF, Di Benedetto G et al (2004) Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J Biol Chem 279:11521–11529

    Article  CAS  PubMed  Google Scholar 

  59. Poburko D et al (2011) Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem 286:11672–11684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Imamura et al. (2009). Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106: 15651–15656.

    Google Scholar 

  61. Aberle H, Haghighi AP et al (2002) wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33(4):545–558

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

G.T.M. was supported by NIH NINDS awards NS061914 and NS083031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory T. Macleod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Macleod, G.T., Ivannikov, M.V. (2017). Examining Mitochondrial Function at Synapses In Situ. In: Strack, S., Usachev, Y. (eds) Techniques to Investigate Mitochondrial Function in Neurons. Neuromethods, vol 123. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6890-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6890-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6888-6

  • Online ISBN: 978-1-4939-6890-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics