Skip to main content

Polarizing Cytokines for Human Th9 Cell Differentiation

  • Protocol
  • First Online:
Th9 Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1585))

Abstract

CD4+ T helper (Th) cell subset generation in vivo requires T cell receptor activation and surface CD28 co-stimulation in the presence of one or more cytokines. Similarly, Th cells can be generated in vitro by activating naïve CD4+CD25− T cells with plate bound-anti-CD3 monoclonal antibody (mAb) (pbCD3) and soluble-anti-CD28 mAb (sCD28) in the presence of polarizing recombinant (r) cytokines and anti-cytokine mAbs. In comparison to in vitro CD4+CD25− T cells, memory CD4+CD25−CD45RO+ T cells have been shown to convert to Th9 cells more efficiently. Here, protocol for in vitro generation of human Th9 cells by activating CD4+CD25−CD45RO+ memory T cells with pbCD3 and sCD28 in the presence of polarizing recombinant interleukin-4 (rIL-4) and transforming growth factor (rTGF-β) is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tada T, Takemori T, Okumura K, Nonaka M, Tokuhisa T (1978) Two distinct types of helper T cells involved in the secondary antibody response: independent and synergistic effects of Ia− and Ia+ helper T cells. J Exp Med 147(2):446–458

    Article  CAS  PubMed  Google Scholar 

  2. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357

    CAS  PubMed  Google Scholar 

  3. Szabo SJ, Sullivan BM, Peng SL, Glimcher LH (2003) Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 21:713–758

    Article  CAS  PubMed  Google Scholar 

  4. Ansel KM, Djuretic I, Tanasa B, Rao A (2006) Regulation of Th2 differentiation and Il4 l0Cus accessibility. Annu Rev Immunol 24:607–656

    Article  CAS  PubMed  Google Scholar 

  5. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132

    Article  CAS  PubMed  Google Scholar 

  6. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6(11):1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    Article  CAS  PubMed  Google Scholar 

  8. Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  CAS  PubMed  Google Scholar 

  9. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jabeen R, Goswami R, Awe O, Kulkarni A, Nguyen ET, Attenasio A, Walsh D, Olson MR, Kim MH, Tepper RS, Sun J, Kim CH, Taparowsky EJ, Zhou B, Kaplan MH (2013) Th9 cell development requires a BATF-regulated transcriptional network. J Clin Invest 123(11):4641–4653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang HC, Han L, Jabeen R, Carotta S, Nutt SL, Kaplan MH (2009) PU.1 regulates TCR expression by modulating GATA-3 activity. J Immunol 183(8):4887–4894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Putheti P, Awasthi A, Popoola J, Gao W, Strom TB (2010) Human CD4 memory T cells can become CD4+IL-9+ T cells. PLoS One 5(1):e8706

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dardalhon V, Korn T, Kuchroo VK, Anderson AC (2008) Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 31(3):252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Putheti P, Pettersson A, Soderstrom M, Link H, Huang YM (2004) Circulating CD4+CD25+ T regulatory cells are not altered in multiple sclerosis and unaffected by disease-modulating drugs. J Clin Immunol 24(2):155–161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Putheti M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Putheti, P. (2017). Polarizing Cytokines for Human Th9 Cell Differentiation. In: Goswami, R. (eds) Th9 Cells. Methods in Molecular Biology, vol 1585. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6877-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6877-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6876-3

  • Online ISBN: 978-1-4939-6877-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics