Skip to main content

Defining Epigenetic Regulation of the Interleukin-9 Gene by Chromatin Immunoprecipitation

  • Protocol
  • First Online:
Th9 Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1585))

Abstract

Regulation of gene expression is essential for the differentiation of pluripotent precursor cells into specialized effector cells and, thus, for the evolution of multiorgan systems. The regulation of gene expression is controlled by a variety of “extra-genic” mechanisms, termed as epigenetic mechanisms. Obviously, alterations in such control mechanisms of gene expression may result in alterations of cellular effector functions, resulting in for example defects in cellular functions, but also, if immune cells are involved, leading to the development of immunologic disorders such as malignancies and autoimmune diseases. The analysis of epigenetic modifications is therefore pertinent not only for the understanding of the regular function of the immune system, but also for the understanding of the pathophysiology of such diseases. As interleukin-9 (IL-9) is the signature cytokine for Th9 cells, and since IL-9 plays important roles in the orchestration of a protective immune responses, the analysis of epigenetic mechanisms underlying the development of IL-9 producing effector T cells is of great interest. Here, we describe a protocol to analyze epigenetic regulation of the IL-9 gene by chromatin immunoprecipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1(2):76–80

    Article  PubMed  Google Scholar 

  2. Rodriguez RM, Lopez-Larrea C, Suarez-Alvarez B (2015) Epigenetic dynamics during CD4(+) T cells lineage commitment. Int J Biochem Cell Biol 67:75–85. doi:10.1016/j.biocel.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  3. Ramming A, Druzd D, Leipe J, Schulze-Koops H, Skapenko A (2012) Maturation-related histone modifications in the PU.1 promoter regulate Th9-cell development. Blood 119(20):4665–4674. doi:10.1182/blood-2011-11-392589

    Article  CAS  PubMed  Google Scholar 

  4. Santos P, Arumemi F, Park KS, Borghesi L, Milcarek C (2011) Transcriptional and epigenetic regulation of B cell development. Immunol Res 50(2–3):105–112. doi:10.1007/s12026-011-8225-y

    Article  CAS  PubMed  Google Scholar 

  5. MacDonald IA, Hathaway NA (2015) Epigenetic roots of immunologic disease and new methods for examining chromatin regulatory pathways. Immunol Cell Biol 93(3):261–270. doi:10.1038/icb.2014.105

    Article  CAS  PubMed  Google Scholar 

  6. Zhou Q, Haupt S, Kreuzer JT, Hammitzsch A, Proft F, Neumann C, Leipe J, Witt M, Schulze-Koops H, Skapenko A (2015) Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann Rheum Dis 74(6):1265–1274. doi:10.1136/annrheumdis-2013-204377

    Article  CAS  PubMed  Google Scholar 

  7. Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112(5):1557–1569. doi:10.1182/blood-2008-05-078154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Snick J, Goethals A, Renauld JC, Van Roost E, Uyttenhove C, Rubira MR, Moritz RL, Simpson RJ (1989) Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J Exp Med 169(1):363–368

    Article  CAS  PubMed  Google Scholar 

  9. Uyttenhove C, Simpson RJ, Van Snick J (1988) Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proc Natl Acad Sci U S A 85(18):6934–6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 9(12):1347–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD, Orban T, Elyaman W, Khoury SJ, Kuchroo VK, Baecher-Allan C, Hafler DA (2010) TGF-beta induces IL-9 production from human Th17 cells. J Immunol 185(1):46–54. doi:10.4049/jimmunol.1000356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, Bettelli E, Oukka M, van Snick J, Renauld JC, Kuchroo VK, Khoury SJ (2009) IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A 106(31):12885–12890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soussi-Gounni A, Kontolemos M, Hamid Q (2001) Role of IL-9 in the pathophysiology of allergic diseases. J Allergy Clin Immunol 107(4):575–582. doi:10.1067/mai.2001.114238

    Article  CAS  PubMed  Google Scholar 

  14. Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, Coyle AJ, Kasper LH, Noelle RJ (2009) IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 206(8):1653–1660. doi:10.1084/jem.20090246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J, Strom TB, Zheng XX, Noelle RJ (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442(7106):997–1002. doi:10.1038/nature05010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft (Grants SK59/4-1, SK59/7-1, SCHU786/2-5, Schu786/8-1 and SCHU1683/9-1), by the DFG Sonderforschungsbereich Grant SFB571 (Autoimmunity), project D9, by the DFG Training Grant GK1202 (Oligonucleotides), project E2, and by the Verbundanträge “ArthroMark” (projects 1 and 7, OIEC100913 and 01EC1401B) and “Impam” (project 10, OIEC1008H) both by the Federal Ministry of Education and Research of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Skapenko Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Skapenko, A., Schulze-Koops, H. (2017). Defining Epigenetic Regulation of the Interleukin-9 Gene by Chromatin Immunoprecipitation. In: Goswami, R. (eds) Th9 Cells. Methods in Molecular Biology, vol 1585. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6877-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6877-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6876-3

  • Online ISBN: 978-1-4939-6877-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics