Skip to main content

Steady-State and Kinetics-Based Affinity Determination in Effector-Effector Target Interactions

  • Protocol
  • First Online:
Plant Pattern Recognition Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1578))

Abstract

Dissecting the functional basis of pathogenicity and resistance in the context of plant innate immunity benefits greatly from detailed knowledge about biomolecular interactions, as both resistance and virulence depend on specific interactions between pathogen and host biomolecules. While in vivo systems provide biological context to host-pathogen interactions, these experiments typically cannot provide quantitative biochemical characterization of biomolecular interactions. However, in many cases, the biological function does not only depend on whether an interaction occurs at all, but rather on the “intensity” of the interaction, as quantified by affinity. Specifically, microbial effector proteins may bind more than one host target to exert virulence functions, and looking at these interactions more closely than would be possible in a purely black-and-white qualitative assay (as classically based on plant or yeast systems) can reveal new insights into the evolutionary arms race between host and pathogen. Recent advances in biomolecular interaction assays that can be performed in vitro allow quantification of binding events with ever greater fidelity and application range. Here, we describe assays based on microscale thermophoresis (MST) and surface plasmon resonance (SPR). Using these technologies allows affinity determination both in steady-state and in kinetic configurations, providing two conceptually independent pathways to arrive at quantitative affinity data describing the interactions of pathogen and host biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Mering C et al (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417:399–403

    Article  Google Scholar 

  2. Aloy P, Russell RB (2004) Ten thousand interactions for the molecular biologist. Nat Biotechnol 22:1317–1321

    Article  CAS  PubMed  Google Scholar 

  3. Berggård T, Linse S, James P (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7:2833–2842

    Article  PubMed  Google Scholar 

  4. Van Der Merwe PA (2001) Surface plasmon resonance. In: Harding SE, Chowdhry BZ (eds) Protein–ligand interactions: hydrodynamics and calorimetry. Oxford University Press, Oxford, pp 137–170

    Google Scholar 

  5. Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 103:19678–19682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jerabek-Willemsen M et al (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9:342–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Myszka DG (1997) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol 8:50–57

    Article  CAS  PubMed  Google Scholar 

  8. Stenberg E et al (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J Colloid Interface Sci 143:513–526

    Article  CAS  Google Scholar 

  9. Mayo CS, Hallock RB (1989) Immunoassay based on surface plasmon oscillations. J Immunol Methods 120:105–114

    Article  CAS  PubMed  Google Scholar 

  10. Myszka DG et al (1998) Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. Biophys J 75:583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnsson B et al (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277

    Article  CAS  PubMed  Google Scholar 

  12. Karlsson R, Fält A (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods 200:121–133

    Article  CAS  PubMed  Google Scholar 

  13. Wofsy C, Goldstein B (2002) Effective rate models for receptors distributed in a layer above a surface: application to cells and biacore. Biophys J 82:1743–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rich RL, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 11:54–61

    Article  CAS  PubMed  Google Scholar 

  15. Andersson K et al (1999) Identification and optimization of regeneration conditions for affinity-based biosensor assays. A multivariate cocktail approach. Anal Chem 71(13):2475–2481

    Article  CAS  PubMed  Google Scholar 

  16. Saerens D et al (2008) Single-domain antibodies as building blocks for novel therapeutics. Curr Opin Pharmacol 8:600–608

    Article  CAS  PubMed  Google Scholar 

  17. Rich RL, Myszka DG (2008) Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 21:355–400

    Article  CAS  PubMed  Google Scholar 

  18. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    Article  CAS  PubMed  Google Scholar 

  19. Sahdev et al (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264

    Article  CAS  PubMed  Google Scholar 

  20. Young CL et al (2012) Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634

    Article  CAS  PubMed  Google Scholar 

  21. Shaner NC et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  22. Prescott M et al (1999) The length of polypeptide linker affects the stability of green fluorescent protein fusion proteins. Anal Biochem 273:305–307

    Article  CAS  PubMed  Google Scholar 

  23. Rich RL, Myszka DG (2010) Grading the commercial optical biosensor literature-Class of 2008: ‘The Mighty Binders’. J Mol Recognit 23:1–64

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Deutsche Forschungsgemeinschaft (SFB1101) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Nürnberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Reinhard, A., Nürnberger, T. (2017). Steady-State and Kinetics-Based Affinity Determination in Effector-Effector Target Interactions. In: Shan, L., He, P. (eds) Plant Pattern Recognition Receptors. Methods in Molecular Biology, vol 1578. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6859-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6859-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6858-9

  • Online ISBN: 978-1-4939-6859-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics