Skip to main content

Glycosylation Profiling of α/β T Cell Receptor Constant Domains Expressed in Mammalian Cells

  • Protocol
  • First Online:
Synthetic Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1575))

Abstract

Glycoprofiling recombinant proteins expressed and secreted from mammalian cells is key to understanding their interactions with glycoprotein receptors in vivo. Recently, recombinant T cell receptors (TCRs) are being considered as therapeutic moieties. Here we present a mass spectrometry based protocol with a “bottom up” approach to characterize glycosylation in recombinant fusion proteins with α/β TCR constant domains expressed in mammalian cells. The protocol focuses on using peptide mass mapping and mass spectrometry for N-linked glycan profiling, including analyses of site occupancy, glycan heterogeneity, and possible glycan compositions and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daniels MA, Hogquist KA, Jameson SC (2002) Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nat Immunol 3(10):903–910. doi:10.1038/ni1002-903

    Article  CAS  PubMed  Google Scholar 

  2. Deprez P, Gautschi M, Helenius A (2005) More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle. Mol Cell 19(2):183–195. doi:10.1016/j.molcel.2005.05.029

    Article  CAS  PubMed  Google Scholar 

  3. Demotte N, Stroobant V, Courtoy PJ, Van Der Smissen P, Colau D, Luescher IF, Hivroz C, Nicaise J, Squifflet JL, Mourad M, Godelaine D, Boon T, van der Bruggen P (2008) Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28(3):414–424. doi:10.1016/j.immuni.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  4. Nabi IR, Shankar J, Dennis JW (2015) The galectin lattice at a glance. J Cell Sci 128(13):2213–2219. doi:10.1242/jcs.151159

    Article  CAS  PubMed  Google Scholar 

  5. Fujii H, Shinzaki S, Iijima H, Wakamatsu K, Iwamoto C, Sobajima T, Kuwahara R, Hiyama S, Hayashi Y, Takamatsu S, Uozumi N, Kamada Y, Tsujii M, Taniguchi N, Takehara T, Miyoshi E (2016) Core fucosylation on T cells, required for activation of T-cell receptor signaling and induction of colitis in mice. Is Increased in Patients With Inflammatory Bowel Disease. Gastroenterology. doi:10.1053/j.gastro.2016.03.002

    PubMed  Google Scholar 

  6. Wu X, Sereno AJ, Huang F, Zhang K, Batt M, Fitchett JR, He D, Rick HL, Conner EM, Demarest SJ (2015) Protein design of IgG/TCR chimeras for the co-expression of Fab-like moieties within bispecific antibodies. MAbs 7(2):364–376. doi:10.1080/19420862.2015.1007826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liddy N, Bossi G, Adams KJ, Lissina A, Mahon TM, Hassan NJ, Gavarret J, Bianchi FC, Pumphrey NJ, Ladell K, Gostick E, Sewell AK, Lissin NM, Harwood NE, Molloy PE, Li Y, Cameron BJ, Sami M, Baston EE, Todorov PT, Paston SJ, Dennis RE, Harper JV, Dunn SM, Ashfield R, Johnson A, McGrath Y, Plesa G, June CH, Kalos M, Price DA, Vuidepot A, Williams DD, Sutton DH, Jakobsen BK (2012) Monoclonal TCR-redirected tumor cell killing. Nat Med 18(6):980–987. doi:10.1038/nm.2764

    Article  CAS  PubMed  Google Scholar 

  8. Seested T, Nielsen HM, Christensen EI, Appa RS (2010) The unsialylated subpopulation of recombinant activated factor VII binds to the asialo-glycoprotein receptor (ASGPR) on primary rat hepatocytes. Thromb Haemost 104(6):1166–1173. doi:10.1160/TH10-06-0356

    Article  CAS  PubMed  Google Scholar 

  9. Rifai A, Fadden K, Morrison SL, Chintalacharuvu KR (2000) The N-glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig)A1 and IgA2 isotypes. J Exp Med 191(12):2171–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lenting PJ, Vans CJ, Denis CV (2007) Clearance mechanisms of von Willebrand factor and factor VIII. J Thromb Haemost 5(7):1353–1360. doi:10.1111/j.1538-7836.2007.02572.x

    Article  CAS  PubMed  Google Scholar 

  11. Lohse S, Meyer S, Meulenbroek LA, Jansen JH, Nederend M, Kretschmer A, Klausz K, Moginger U, Derer S, Rosner T, Kellner C, Schewe D, Sondermann P, Tiwari S, Kolarich D, Peipp M, Leusen JH, Valerius T (2016) An anti-EGFR IgA that displays improved pharmacokinetics and myeloid effector cell engagement in vivo. Cancer Res 76(2):403–417. doi:10.1158/0008-5472.CAN-15-1232

    Article  CAS  PubMed  Google Scholar 

  12. Kolli V, Schumacher KN, Dodds ED (2015) Engaging challenges in glycoproteomics: recent advances in MS-based glycopeptide analysis. Bioanalysis 7(1):113–131. doi:10.4155/bio.14.272

    Article  CAS  PubMed  Google Scholar 

  13. Chuang GY, Boyington JC, Joyce MG, Zhu J, Nabel GJ, Kwong PD, Georgiev I (2012) Computational prediction of N-linked glycosylation incorporating structural properties and patterns. Bioinformatics 28(17):2249–2255. doi:10.1093/bioinformatics/bts426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stanley P, Schachter H, Taniguchi N (2009) N-Glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  15. Taga EM, Waheed A, Van Etten RL (1984) Structural and chemical characterization of a homogeneous peptide N-glycosidase from almond. Biochemistry 23(5):815–822

    Article  CAS  PubMed  Google Scholar 

  16. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488. doi:10.1038/emboj.2013.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nishikawa I, Nakajima Y, Ito M, Fukuchi S, Homma K, Nishikawa K (2010) Computational prediction of O-linked glycosylation sites that preferentially map on intrinsically disordered regions of extracellular proteins. Int J Mol Sci 11(12):4991–5008. doi:10.3390/ijms11124991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. North SJ, Hitchen PG, Haslam SM, Dell A (2009) Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol 19(5):498–506. doi:10.1016/j.sbi.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brockhausen I, Schachter H, Stanley P (2009) O-GalNAc Glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  20. Kolarich D, Lepenies B, Seeberger PH (2012) Glycomics, glycoproteomics and the immune system. Curr Opin Chem Biol 16(1–2):214–220. doi:10.1016/j.cbpa.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  21. Morelle W, Canis K, Chirat F, Faid V, Michalski JC (2006) The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 6(14):3993–4015. doi:10.1002/pmic.200600129

    Article  CAS  PubMed  Google Scholar 

  22. Kuraya N, Hase S (1992) Release of O-linked sugar chains from glycoproteins with anhydrous hydrazine and pyridylamination of the sugar chains with improved reaction conditions. J Biochem 112(1):122–126

    Article  CAS  PubMed  Google Scholar 

  23. Edge AS (2003) Deglycosylation of glycoproteins with trifluoromethanesulphonic acid: elucidation of molecular structure and function. Biochem J 376(Pt 2):339–350. doi:10.1042/BJ20030673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hogan JM, Pitteri SJ, Chrisman PA, McLuckey SA (2005) Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J Proteome Res 4(2):628–632. doi:10.1021/pr049770q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alley WR Jr, Mann BF, Novotny MV (2013) High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 113(4):2668–2732. doi:10.1021/cr3003714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cooper CA, Gasteiger E, Packer NH (2001) GlycoMod—a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1(2):340–349. doi:10.1002/1615-9861(200102)1:2<340::AID-PROT340>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  27. Campbell MP, Peterson R, Mariethoz J, Gasteiger E, Akune Y, Aoki-Kinoshita KF, Lisacek F, Packer NH (2014) UniCarbKB: building a knowledge platform for glycoproteomics. Nucleic Acids Res 42(Database issue):D215–D221. doi:10.1093/nar/gkt1128

    Article  CAS  PubMed  Google Scholar 

  28. Shubhakar A, Reiding KR, Gardner RA, Spencer DI, Fernandes DL, Wuhrer M (2015) High-throughput analysis and automation for glycomics studies. Chromatographia 78(5–6):321–333. doi:10.1007/s10337-014-2803-9

    Article  CAS  PubMed  Google Scholar 

  29. Ivancic MM, Gadgil HS, Halsall HB, Treuheit MJ (2010) LC/MS analysis of complex multiglycosylated human alpha(1)-acid glycoprotein as a model for developing identification and quantitation methods for intact glycopeptide analysis. Anal Biochem 400(1):25–32. doi:10.1016/j.ab.2010.01.026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Bryan E. Jones and Wolfgang Glaesner for their managerial support, Flora Huang for the purification of TCR proteins, and Jayd Hanna and Benjamin Gutierrez for assistance with transient transfection and 293F cell culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zhang, K., Demarest, S.J., Wu, X., Fitchett, J.R. (2017). Glycosylation Profiling of α/β T Cell Receptor Constant Domains Expressed in Mammalian Cells. In: Tiller, T. (eds) Synthetic Antibodies. Methods in Molecular Biology, vol 1575. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6857-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6857-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6855-8

  • Online ISBN: 978-1-4939-6857-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics