Skip to main content

Optical Coherence Microscopy

  • Protocol
  • First Online:
Light Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1563))

Abstract

The present chapter aims at demonstrating the capabilities of optical coherence microscopy (OCM) for applications in biomedical imaging. We furthermore review the functional imaging capabilities of OCM focusing on lable-free optical angiography. We conclude with a section on digital wavefront control and a short outlook on future developments, in particular for contrast enhancement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography—principles and applications. Rep Prog Phys 66(2):239–303

    Article  Google Scholar 

  2. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA (1995) Optical biopsy and imaging using optical coherence tomography. Nat Med 1(9):970–972

    Article  CAS  PubMed  Google Scholar 

  4. Drexler W, Morgner U, Kartner FX, Pitris C, Boppart SA, Li XD, Ippen EP, Fujimoto JG (1999) In vivo ultrahigh-resolution optical coherence tomography. Opt Lett 24(17):1221–1223

    Article  CAS  PubMed  Google Scholar 

  5. Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher AF, Drexler W, Apolonski A, Wadsworth WJ, Knight JC, Russell PSJ, Vetterlein M, Scherzer E (2002) Submicrometer axial resolution optical coherence tomography. Opt Lett 27(20):1800–1802

    Article  CAS  PubMed  Google Scholar 

  6. Kray S, Spöler F, Fürst M, Kurz H (2009) High-resolution simultaneous dual-band spectral domain optical coherence tomography. Opt Lett 34(13):1970–1972

    Article  PubMed  Google Scholar 

  7. Vabre L, Dubois A, Boccara AC (2002) Thermal-light full-field optical coherence tomography. Opt Lett 27(7):530–532

    Article  CAS  PubMed  Google Scholar 

  8. Schmitt JM, Lee SL, Yung KM (1997) An optical coherence microscope with enhanced resolving power in thick tissue. Opt Commun 142(4–6):203–207

    Article  CAS  Google Scholar 

  9. Podoleanu AG, Dobre GM, Jackson DA (1998) En-face coherence imaging using galvanometer scanner modulation. Opt Lett 23(3):147–149

    Article  CAS  PubMed  Google Scholar 

  10. Hitzenberger C, Trost P, Lo P-W, Zhou Q (2003) Three-dimensional imaging of the human retina by high-speed optical coherence tomography. Opt Express 11(21):2753–2761

    Article  PubMed  Google Scholar 

  11. Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG (1994) Optical coherence microscopy in scattering media. Opt Lett 19(8):590–592

    Article  CAS  PubMed  Google Scholar 

  12. Pircher M, Baumann B, Götzinger E, Sattmann H, Hitzenberger CK (2009) Phase contrast coherence microscopy based on transverse scanning. Opt Lett 34(12):1750–1752

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huber R, Wojtkowski M, Fujimoto JG, Jiang JY, Cable AE (2005) Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt Express 13(26):10523–10538

    Article  CAS  PubMed  Google Scholar 

  14. Herman RM, Wiggins TA (1991) Production and uses of diffractionless beams. J Opt Soc Am A Opt Image Sci Vis 8(6):932–942

    Article  Google Scholar 

  15. Ding ZH, Ren HW, Zhao YH, Nelson JS, Chen ZP (2002) High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt Lett 27(4):243–245

    Article  PubMed  Google Scholar 

  16. Lee KS, Rolland LP (2008) Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. Opt Lett 33(15):1696–1698

    Article  PubMed  Google Scholar 

  17. Tan KM, Mazilu M, Chow TH, Lee WM, Taguchi K, Ng BK, Sibbett W, Herrington CS, Brown CTA, Dholakia K (2009) In-fiber common-path optical coherence tomography using a conical-tip fiber. Opt Express 17(4):2375–2384

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE, Tearney GJ (2011) Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med 17(8):1010–1014. doi:10.1038/nm.2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lorenser D, Yang X, Sampson DD (2012) Ultrathin fiber probes with extended depth of focus for optical coherence tomography. Opt Lett 37(10):1616–1618

    Article  PubMed  Google Scholar 

  20. Leitgeb RA, Villiger M, Bachmann AH, Steinmann L, Lasser T (2006) Extended focus depth for Fourier domain optical coherence microscopy. Opt Lett 31(16):2450–2452

    Article  CAS  PubMed  Google Scholar 

  21. de Boer JF, Milner TE (2002) Review of polarization sensitive optical coherence tomography and Stokes vector determination. J Biomed Opt. 7(3):359–371. doi:10.1117/1.1483879

    Article  PubMed  Google Scholar 

  22. Pircher M, Hitzenberger CK, Schmidt-Erfurth U (2011) Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res 30(6):431–451. doi:10.1016/j.preteyeres.2011.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  23. LeitgebRA, WerkmeisterRM, BlatterC, SchmettererL (2014) Doppler optical coherence tomography. Prog Retin Eye Res 41(0):26–43. doi:http://dx.doi.org/10.1016/j.preteyeres.2014.03.004

  24. Kennedy BF, McLaughlin RA, Kennedy KM, Chin L, Curatolo A, Tien A, Latham B, Saunders CM, Sampson DD (2014) Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure. Biomed Opt Express 5(7):2113–2124. doi:10.1364/BOE.5.002113

    Article  PubMed  PubMed Central  Google Scholar 

  25. Leitgeb RA (2011) Current technologies for high-speed and functional imaging with optical coherence tomography. In: Hawkes PW (ed) Advances in imaging and electron physics, Advances in imaging and electron physics, vol 168. Elsevier Academic Press Inc, San Diego, pp 109–192. doi:10.1016/b978-0-12-385983-9.00003-x

    Google Scholar 

  26. Ralston TS, Marks DL, Carney PS, Boppart SA (2006) Inverse scattering for optical coherence tomography. J Opt Soc Am A 23(5):1027–1037

    Article  Google Scholar 

  27. Ralston TS, Marks DL, Carney PS, Boppart SA (2008) Real-time interferometric synthetic aperture microscopy. Opt Express 16(4):2555–2569

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yasuno Y, Sando Y, Sugisaka JI, Endo T, Makita S, Aoki G, Itoh M, Yatagai T (2005) In-focus Fourier-domain optical coherence tomography by complex numerical method. Opt Quantum Electron 37(13–15):1185–1189

    Article  Google Scholar 

  29. Villiger M, Lasser T (2010) Image formation and tomogram reconstruction in optical coherence microscopy. J Opt Soc Am A 27(10):2216–2228

    Article  Google Scholar 

  30. WojtkowskiM, LeitgebR, KowalczykA, FercherA (2002) Fourier domain OCT imaging of human eye in vivo. In:Coherence domain optical methods in biomedical science and clinical applications vi, vol 3. Proceedings of the society of photo-optical instrumentation engineers (SPIE), pp 230–236

    Google Scholar 

  31. Villiger M, Goulley J, Friedrich M, Grapin-Botton A, Meda P, Lasser T, Leitgeb RA (2009) In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy. Diabetologia 52(8):1599–1607

    Article  CAS  PubMed  Google Scholar 

  32. Blatter C, Grajciar B, Eigenwillig CM, Wieser W, Biedermann BR, Huber R, Leitgeb RA (2011) Extended focus high-speed swept source OCT with self-reconstructive illumination. Opt Express 19:12141–12155.

    Google Scholar 

  33. Berclaz C, Goulley J, Villiger M, Pache C, Bouwens A, Martin-Williams E, Van de Ville D, Davison AC, Grapin-Botton A, Lasser T (2012) Diabetes imaging-quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy. Biomed Opt Express 3(6):1365–1380

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bolmont T, Bouwens A, Pache C, Dimitrov M, Berclaz C, Villiger M, Wegenast-Braun BM, Lasser T, Fraering PC (2012) Label-free imaging of cerebral beta-amyloidosis with extended-focus optical coherence microscopy. J Neurosci 32(42):14548–14556. doi:10.1523/Jneurosci.0925-12.2012

    Article  CAS  PubMed  Google Scholar 

  35. Radde R, Bolmont T, Sa K, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jäggi F, Wolburg H, Gengler S, Haass C, Ghetti B, Czech C, Hölscher C, Mathews PM, Jucker M (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7:940–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y (2006) Optical coherence angiography. Opt Express 14:7821–7840

    Article  PubMed  Google Scholar 

  37. Spaide RF, Fujimoto JG, Waheed NK (2015) Optical coherence tomography angiography. Retina 35(11):2161–2162. doi:10.1097/iae.0000000000000881

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MKK, Jiang J, Cable A, Wilson BC, Vitkin IA, Yang VXD (2008) Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett 33(13):1530–1532

    Article  PubMed  Google Scholar 

  39. Kim DY, Fingler J, Werner JS, Schwartz DM, Fraser SE, Zawadzki RJ (2011) In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed Opt Express 2(6):1504–1513

    Article  PubMed  PubMed Central  Google Scholar 

  40. An L, Qin J, Wang RK (2010) Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. Opt Express 18(8):8220–8228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. SchmollT, IvascuIR, SinghASG, BlatterC, LeitgebRA (2015) Intra-and inter-frame differential doppler optical coherence tomography. Sovremennye Tehnologii v Medicine 7 (1):34–42. doi:10.17691/stm2015.7.1.05

    Google Scholar 

  42. Blatter C, Weingast J, Alex A, Grajciar B, Wieser W, Drexler W, Huber R, Leitgeb RA (2012) In situ structural and microangiographic assessment of human skin lesions with high-speed OCT. Biomed Opt Express 3(10):2636–2646

    Article  PubMed  PubMed Central  Google Scholar 

  43. Berclaz C, Schmidt-Christensen A, Szlag D, Extermann J, Hansen L, Bouwens A, Villiger M, Goulley J, Schuit F, Grapin-Botton A, Lasser T, Holmberg D (2016) Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging. Diabetologia 59(3):550–559. doi:10.1007/s00125-015-3819-x

    Article  CAS  PubMed  Google Scholar 

  44. Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T, Munn LL, Tearney GJ, Fukumura D, Jain RK, Bouma BE (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15(10):1219–U1151. doi:10.1038/nm.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bouwens A, Bolmont T, Szlag D, Berclaz C, Lasser T (2014) Quantitative cerebral blood flow imaging with extended-focus optical coherence microscopy. Opt Lett 39(1):37–40. doi:10.1364/OL.39.000037

    Article  PubMed  Google Scholar 

  46. Srinivasan VJ, Sakadi S, Gorczynska I, Ruvinskaya S, Wu W, Fujimoto JG, Boas DA (2010) Quantitative cerebral blood flow with optical coherence tomography. Opt Express 18(3):2477–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choma MA, Ellerbee AK, Yang C, Creazzo TL, Izatt JA (2005) Spectral-domain phase microscopy. Opt Lett 30(10):1162–1164

    Article  PubMed  Google Scholar 

  48. Hillmann D, Lührs C, Bonin T, Koch P, Hüttmann G (2011) Holoscopy—holographic optical coherence tomography. Opt Lett 36(13):2390–2392. doi:10.1364/OL.36.002390

    Article  PubMed  Google Scholar 

  49. Povazay B, Unterhuber A, Hermann B, Sattmann H, Arthaber H, Drexler W (2006) Full-field time-encoded frequency-domain optical coherence tomography. Opt Express 14(17):7661–7669. doi:10.1364/OE.14.007661

    Article  PubMed  Google Scholar 

  50. Kumar A, Drexler W, Leitgeb RA (2013) Subaperture correlation based digital adaptive optics for full field optical coherence tomography. Opt Express 21(9):10850–10866. doi:10.1364/OE.21.010850

    Article  PubMed  Google Scholar 

  51. Kumar A, Kamali T, Platzer R, Unterhuber A, Drexler W, Leitgeb RA (2015) Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT. Biomed Opt Express 6(4):1124–1134. doi:10.1364/BOE.6.001124

    Article  PubMed  PubMed Central  Google Scholar 

  52. Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA (2014) Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt 19(7):071412–071412. doi:10.1117/1.JBO.19.7.071412

    Article  PubMed  Google Scholar 

  53. Wang LV (2009) Multiscale photoacoustic microscopy and computed tomography. Nat Photon 3(9):503–509

    Article  CAS  Google Scholar 

  54. Blatter C, Grajciar B, Zou P, Wieser W, Verhoef AJ, Huber R, Leitgeb RA (2012) Intrasweep phase-sensitive optical coherence tomography for noncontact optical photoacoustic imaging. Opt Lett 37(21):4368–4370

    Article  PubMed  Google Scholar 

  55. Liu M, Chen Z, Zabihian B, Sinz C, Zhang E, Beard PC, Ginner L, Hoover E, Minneman MP, Leitgeb RA, Kittler H, Drexler W (2016) Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging. Biomed Opt Express 7:3390–3402

    Google Scholar 

Download references

Acknowledgments

Acknowledged are the contributions of Abhishek Kumar, Laurin Ginner, Daniel Fechtig, Cedric Blatter, Branislav Grajciar, and Wolfgang Drexler, from the Medical University Vienna (Austria), Theo Lasser, Martin Villiger, Adrian Bachmann from the Ecole Polytechnique Fédérale de Lausanne (Switzerland), Robert Huber from the Ludwig Maximillian University in Munich (Germany) as well as the following financial support: European Commission FP7-HEALTH (grant 201880, FUN OCT), Austrian Christian Doppler Association, and Swiss National Fonds (SNF grant 205321-10974).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer A. Leitgeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Leitgeb, R.A. (2017). Optical Coherence Microscopy. In: Markaki, Y., Harz, H. (eds) Light Microscopy. Methods in Molecular Biology, vol 1563. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6810-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6810-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6808-4

  • Online ISBN: 978-1-4939-6810-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics