Skip to main content

Modeling Peptide-Protein Structure and Binding Using Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind

  • Protocol
  • First Online:
Modeling Peptide-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1561))

Abstract

Many signaling and regulatory processes involve peptide-mediated protein interactions, i.e., the binding of a short stretch in one protein to a domain in its partner. Computational tools that generate accurate models of peptide-receptor structures and binding improve characterization and manipulation of known interactions, help to discover yet unknown peptide-protein interactions and networks, and bring into reach the design of peptide-based drugs for targeting specific systems of medical interest.

Here, we present a concise overview of the Rosetta FlexPepDock protocol and its derivatives that we have developed for the structure-based characterization of peptide-protein binding. Rosetta FlexPepDock was built to generate precise models of protein-peptide complex structures, by effectively addressing the challenge of the considerable conformational flexibility of the peptide. Rosetta FlexPepBind is an extension of this protocol that allows characterizing peptide-binding affinities and specificities of various biological systems, based on the structural models generated by Rosetta FlexPepDock. We provide detailed descriptions and guidelines for the usage of these protocols, and on a specific example, we highlight the variety of different challenges that can be met and the questions that can be answered with Rosetta FlexPepDock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petsalaki E, Russell RB (2008) Peptide-mediated interactions in biological systems: new discoveries and applications. Curr Opin Biotechnol 19:344–350

    Article  CAS  PubMed  Google Scholar 

  2. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452

    Article  CAS  PubMed  Google Scholar 

  3. Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, Gibson TJ, Lewis J, Serrano L, Russell RB (2005) Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 3:e405

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6:2351–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP (1996) Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87:1285–1294

    Article  CAS  PubMed  Google Scholar 

  6. London N, Raveh B, Movshovitz-Attias D, Schueler-Furman O (2010) Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins 78(15):3140–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. London N, Raveh B, Schueler-Furman O (2013) Druggable protein-protein interactions—from hot spots to hot segments. Curr Opin Chem Biol 17:952–959

    Article  CAS  PubMed  Google Scholar 

  8. Andrews SJ, Rothnagel JA (2014) Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15:193–204

    Article  CAS  PubMed  Google Scholar 

  9. Heemels MT, Ploegh H (1995) Generation, translocation, and presentation of MHC class I-restricted peptides. Annu Rev Biochem 64:463–491

    Article  CAS  PubMed  Google Scholar 

  10. Zhou A, Webb G, Zhu X, Steiner DF (1999) Proteolytic processing in the secretory pathway. J Biol Chem 274:20745–20748

    Article  CAS  PubMed  Google Scholar 

  11. Over B, Wetzel S, Grutter C, Nakai Y, Renner S, Rauh D, Waldmann H (2013) Natural-product-derived fragments for fragment-based ligand discovery. Nat Chem 5:21–28

    Article  CAS  PubMed  Google Scholar 

  12. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18:188–199

    Article  CAS  PubMed  Google Scholar 

  13. London N, Raveh B, Schueler-Furman O (2013) Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr Opin Struct Biol 23:894–902

    Article  CAS  PubMed  Google Scholar 

  14. Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kjaergaard M, Teilum K, Poulsen FM (2010) Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP. Proc Natl Acad Sci U S A 107:12535–12540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosal R, Pincus MR, Brandt-Rauf PW, Fine RL, Michl J, Wang H (2004) NMR solution structure of a peptide from the mdm-2 binding domain of the p53 protein that is selectively cytotoxic to cancer cells. Biochemistry 43:1854–1861

    Article  CAS  PubMed  Google Scholar 

  17. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025

    Article  CAS  PubMed  Google Scholar 

  18. Fuxreiter M, Tompa P, Simon I (2007) Local structural disorder imparts plasticity on linear motifs. Bioinformatics 23:950–956

    Article  CAS  PubMed  Google Scholar 

  19. Trellet M, Melquiond AS, Bonvin AM (2015) Information-driven modeling of protein-peptide complexes. Methods Mol Biol 1268:221–239

    Article  CAS  PubMed  Google Scholar 

  20. Ben-Shimon A, Niv MY (2015) AnchorDock: blind and flexible anchor-driven peptide docking. Structure 23:929–940

    Article  CAS  PubMed  Google Scholar 

  21. Saladin A, Rey J, Thevenet P, Zacharias M, Moroy G, Tuffery P (2014) PEP-SiteFinder: a tool for the blind identification of peptide binding sites on protein surfaces. Nucleic Acids Res 42:W221–W226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6:e18934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lavi A, Ngan CH, Movshovitz-Attias D, Bohnuud T, Yueh C, Beglov D, Schueler-Furman O, Kozakov D (2013) Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins 81:2096–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ben-Shimon A, Eisenstein M (2010) Computational mapping of anchoring spots on protein surfaces. J Mol Biol 402:259–277

    Article  CAS  PubMed  Google Scholar 

  25. Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78:2029–2040

    CAS  PubMed  Google Scholar 

  26. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382

    Article  CAS  PubMed  Google Scholar 

  28. Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J (2010) Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49:2987–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. King CA, Bradley P (2010) Structure-based prediction of protein-peptide specificity in Rosetta. Proteins 78:3437–3449

    Article  CAS  PubMed  Google Scholar 

  30. Yanover C, Petersdorf EW, Malkki M, Gooley T, Spellman S, Velardi A, Bardy P, Madrigal A, Bignon JD, Bradley P (2011) HLA mismatches and hematopoietic cell transplantation: structural simulations assess the impact of changes in peptide binding specificity on transplant outcome. Immunome Res 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Smith CA, Kortemme T (2010) Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains. J Mol Biol 402:460–474

    Article  CAS  PubMed  Google Scholar 

  32. Grigoryan G, Reinke AW, Keating AE (2009) Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458:859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. London N, Lamphear CL, Hougland JL, Fierke CA, Schueler-Furman O (2011) Identification of a novel class of farnesylation targets by structure-based modeling of binding specificity. PLoS Comput Biol 7:e1002170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. London N, Gulla S, Keating AE, Schueler-Furman O (2012) In silico and in vitro elucidation of BH3 binding specificity toward Bcl-2. Biochemistry 51:5841–5850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alam N, Zimmerman L, Wolfson NA, Joseph CG, Fierke CA, Schueler-Furman O (2016) Structure-based identification of HDAC8 non-histone substrates. Structure 24:458–468

    Article  CAS  PubMed  Google Scholar 

  36. Dinkel H, Michael S, Weatheritt RJ, Davey NE, Van Roey K, Altenberg B, Toedt G, Uyar B, Seiler M, Budd A et al (2012) ELM—the database of eukaryotic linear motifs. Nucleic Acids Res 40:D242–D251

    Article  CAS  PubMed  Google Scholar 

  37. Dinkel H, Van Roey K, Michael S, Kumar M, Uyar B, Altenberg B, Milchevskaya V, Schneider M, Kuhn H, Behrendt A et al (2016) ELM 2016-data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res 44:D294–D300

    Article  PubMed  Google Scholar 

  38. London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server—high resolution modeling of peptide-protein interactions. Nucleic Acids Res 39:W249–W253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Belitsky M, Avshalom H, Erental A, Yelin I, Kumar S, London N, Sperber M, Schueler-Furman O, Engelberg-Kulka H (2011) The Escherichia coli extracellular death factor EDF induces the endoribonucleolytic activities of the toxins MazF and ChpBK. Mol Cell 41:625–635

    Article  CAS  PubMed  Google Scholar 

  40. Kumar S, Kolodkin-Gal I, Vesper O, Alam N, Schueler-Furman O, Moll I, Engelberg-Kulka H (2016) Escherichia coli quorum-sensing EDF, a peptide generated by novel multiple distinct mechanisms and regulated by trans-translation. MBio 7

    Google Scholar 

  41. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, Baker D (2003) Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331:281–299

    Article  CAS  PubMed  Google Scholar 

  42. Wang C, Schueler-Furman O, Baker D (2005) Improved side-chain modeling for protein-protein docking. Protein Sci 14:1328–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone flexibility. J Mol Biol 373:503–519

    Article  CAS  PubMed  Google Scholar 

  44. Petsalaki E, Stark A, Garcia-Urdiales E, Russell RB (2009) Accurate prediction of peptide binding sites on protein surfaces. PLoS Comput Biol 5:e1000335

    Article  PubMed  PubMed Central  Google Scholar 

  45. Trabuco LG, Lise S, Petsalaki E, Russell RB (2012) PepSite: prediction of peptide-binding sites from protein surfaces. Nucleic Acids Res 40:W423–W427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  CAS  PubMed  Google Scholar 

  47. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515:572–576

    Article  CAS  PubMed  Google Scholar 

  48. Arber C, Feng X, Abhyankar H, Romero E, Wu MF, Heslop HE, Barth P, Dotti G, Savoldo B (2015) Survivin-specific T cell receptor targets tumor but not T cells. J Clin Invest 125:157–168

    Article  PubMed  Google Scholar 

  49. Solomonson M, Huesgen PF, Wasney GA, Watanabe N, Gruninger RJ, Prehna G, Overall CM, Strynadka NC (2013) Structure of the mycosin-1 protease from the mycobacterial ESX-1 protein type VII secretion system. J Biol Chem 288:17782–17790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eckhard U, Huesgen PF, Brandstetter H, Overall CM (2014) Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen. J Proteomics 100:102–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marino G, Huesgen PF, Eckhard U, Overall CM, Schroder WP, Funk C (2014) Family-wide characterization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity. Biochem J 457:335–346

    Article  CAS  PubMed  Google Scholar 

  52. Barre O, Dufour A, Eckhard U, Kappelhoff R, Beliveau F, Leduc R, Overall CM (2014) Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries. PLoS One 9:e105984

    Article  PubMed  PubMed Central  Google Scholar 

  53. Velarde-Salcedo AJ, Barrera-Pacheco A, Lara-Gonzalez S, Montero-Moran GM, Diaz-Gois A, Gonzalez de Mejia E, Barba de la Rosa AP (2013) In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chem 136:758–764

    Article  CAS  PubMed  Google Scholar 

  54. Lamarque MH, Roques M, Kong-Hap M, Tonkin ML, Rugarabamu G, Marq JB, Penarete-Vargas DM, Boulanger MJ, Soldati-Favre D, Lebrun M (2014) Plasticity and redundancy among AMA-RON pairs ensure host cell entry of Toxoplasma parasites. Nat Commun 5:4098

    Article  CAS  PubMed  Google Scholar 

  55. Srinivasan P, Ekanem E, Diouf A, Tonkin ML, Miura K, Boulanger MJ, Long CA, Narum DL, Miller LH (2014) Immunization with a functional protein complex required for erythrocyte invasion protects against lethal malaria. Proc Natl Acad Sci U S A 111:10311–10316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lesniewska K, Warbrick E, Ohkura H (2014) Peptide aptamers define distinct EB1- and EB3-binding motifs and interfere with microtubule dynamics. Mol Biol Cell 25:1025–1036

    Article  PubMed  PubMed Central  Google Scholar 

  57. Poplawski A, Hu K, Lee W, Natesan S, Peng D, Carlson S, Shi X, Balaz S, Markley JL, Glass KC (2014) Molecular insights into the recognition of N-terminal histone modifications by the BRPF1 bromodomain. J Mol Biol 426:1661–1676

    Article  CAS  PubMed  Google Scholar 

  58. Ozawa K, Horan NP, Robinson A, Yagi H, Hill FR, Jergic S, Xu ZQ, Loscha KV, Li N, Tehei M et al (2013) Proofreading exonuclease on a tether: the complex between the E. coli DNA polymerase III subunits alpha, epsilon, theta and beta reveals a highly flexible arrangement of the proofreading domain. Nucleic Acids Res 41:5354–5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Doray B, Misra S, Qian Y, Brett TJ, Kornfeld S (2012) Do GGA adaptors bind internal DXXLL motifs? Traffic 13:1315–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thomas S, Rai J, John L, Schaefer S, Putzer BM, Herchenroder O (2013) Chikungunya virus capsid protein contains nuclear import and export signals. Virol J 10:269

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shi X, Betzi S, Lugari A, Opi S, Restouin A, Parrot I, Martinez J, Zimmermann P, Lecine P, Huang M et al (2012) Structural recognition mechanisms between human Src homology domain 3 (SH3) and ALG-2-interacting protein X (Alix). FEBS Lett 586:1759–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Crawley SW, Gharaei MS, Ye Q, Yang Y, Raveh B, London N, Schueler-Furman O, Jia Z, Cote GP (2011) Autophosphorylation activates Dictyostelium myosin II heavy chain kinase A by providing a ligand for an allosteric binding site in the alpha-kinase domain. J Biol Chem 286:2607–2616

    Article  CAS  PubMed  Google Scholar 

  63. Yin G, Lopes da Fonseca T, Eisbach SE, Anduaga AM, Breda C, Orcellet ML, Szego EM, Guerreiro P, Lazaro DF, Braus GH et al (2014) alpha-Synuclein interacts with the switch region of Rab8a in a Ser129 phosphorylation-dependent manner. Neurobiol Dis 70:149–161

    Article  CAS  PubMed  Google Scholar 

  64. Buch I, Fishelovitch D, London N, Raveh B, Wolfson HJ, Nussinov R (2010) Allosteric regulation of glycogen synthase kinase 3beta: a theoretical study. Biochemistry 49:10890–10901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vangone A, Bonvin AM (2015) Contacts-based prediction of binding affinity in protein-protein complexes. Elife 4:e07454

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vreven T, Moal IH, Vangone A, Pierce BG, Kastritis PL, Torchala M, Chaleil R, Jimenez-Garcia B, Bates PA, Fernandez-Recio J et al (2015) Updates to the integrated protein-protein interaction benchmarks: docking benchmark Version 5 and affinity benchmark Version 2. J Mol Biol 427:3031–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chaudhury S, Gray JJ (2009) Identification of structural mechanisms of HIV-1 protease specificity using computational peptide docking: implications for drug resistance. Structure 17:1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kuhlman B, Baker D (2000) Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci U S A 97:10383–10388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hougland JL, Hicks KA, Hartman HL, Kelly RA, Watt TJ, Fierke CA (2010) Identification of novel peptide substrates for protein farnesyltransferase reveals two substrate classes with distinct sequence selectivities. J Mol Biol 395:176–190

    Article  CAS  PubMed  Google Scholar 

  70. Krzysiak AJ, Aditya AV, Hougland JL, Fierke CA, Gibbs RA (2010) Synthesis and screening of a CaaL peptide library versus FTase reveals a surprising number of substrates. Bioorg Med Chem Lett 20:767–770

    Article  CAS  PubMed  Google Scholar 

  71. Maurer-Stroh S, Eisenhaber F (2005) Refinement and prediction of protein prenylation motifs. Genome Biol 6:R55

    Article  PubMed  PubMed Central  Google Scholar 

  72. Al-Quadan T, Price CT, London N, Schueler-Furman O, AbuKwaik Y (2011) Anchoring of bacterial effectors to host membranes through host-mediated lipidation by prenylation: a common paradigm. Trends Microbiol 19:573–579

    Article  CAS  PubMed  Google Scholar 

  73. Vannini A, Volpari C, Gallinari P, Jones P, Mattu M, Carfi A, De Francesco R, Steinkuhler C, Di Marco S (2007) Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex. EMBO Rep 8:879–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Olson DE, Udeshi ND, Wolfson NA, Pitcairn CA, Sullivan ED, Jaffe JD, Svinkina T, Natoli T, Lu X, Paulk J et al (2014) An unbiased approach to identify endogenous substrates of “histone” deacetylase 8. ACS Chem Biol 9:2210–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramisetty BC, Natarajan B, Santhosh RS (2015) mazEF-mediated programmed cell death in bacteria: “what is this?”. Crit Rev Microbiol 41:89–100

    Article  CAS  PubMed  Google Scholar 

  76. Kamada K, Hanaoka F, Burley SK (2003) Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol Cell 11:875–884

    Article  CAS  PubMed  Google Scholar 

  77. Szyk A, Maurizi MR (2006) Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site. J Struct Biol 156:165–174

    Article  CAS  PubMed  Google Scholar 

  78. Thompson MW, Maurizi MR (1994) Activity and specificity of Escherichia coli ClpAP protease in cleaving model peptide substrates. J Biol Chem 269:18201–18208

    CAS  PubMed  Google Scholar 

  79. Jennings LD, Lun DS, Medard M, Licht S (2008) ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: mechanistic studies of ATP-independent proteolysis. Biochemistry 47:11536–11546

    Article  CAS  PubMed  Google Scholar 

  80. Poy F, Yaffe MB, Sayos J, Saxena K, Morra M, Sumegi J, Cantley LC, Terhorst C, Eck MJ (1999) Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol Cell 4:555–561

    Article  CAS  PubMed  Google Scholar 

  81. Li Y, Suino K, Daugherty J, Xu HE (2005) Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Mol Cell 19:367–380

    Article  CAS  PubMed  Google Scholar 

  82. Reid TS, Terry KL, Casey PJ, Beese LS (2004) Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J Mol Biol 343:417–433

    Article  CAS  PubMed  Google Scholar 

  83. Lee EF, Czabotar PE, Yang H, Sleebs BE, Lessene G, Colman PM, Smith BJ, Fairlie WD (2009) Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands. J Biol Chem 284:30508–30517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fire E, Gulla SV, Grant RA, Keating AE (2010) Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes. Protein Sci 19:507–519

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ku B, Liang C, Jung JU, Oh BH (2011) Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res 21:627–641

    Article  CAS  PubMed  Google Scholar 

  86. Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35:133–152

    Article  CAS  PubMed  Google Scholar 

  87. Dutta S, Gulla S, Chen TS, Fire E, Grant RA, Keating AE (2010) Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. J Mol Biol 398:747–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gurard-Levin ZA, Kilian KA, Kim J, Bahr K, Mrksich M (2010) Peptide arrays identify isoform-selective substrates for profiling endogenous lysine deacetylase activity. ACS Chem Biol 5:863–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ora Schueler-Furman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Alam, N., Schueler-Furman, O. (2017). Modeling Peptide-Protein Structure and Binding Using Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind. In: Schueler-Furman, O., London, N. (eds) Modeling Peptide-Protein Interactions. Methods in Molecular Biology, vol 1561. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6798-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6798-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6796-4

  • Online ISBN: 978-1-4939-6798-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics