Skip to main content

High-Throughput Quantification of SH2 Domain–Phosphopeptide Interactions with Cellulose–Peptide Conjugate Microarrays

  • Protocol
  • First Online:
SH2 Domains

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1555))

Abstract

The Src Homology 2 (SH2) domain family primarily recognizes phosphorylated tyrosine (pY) containing peptide motifs. The relative affinity preferences among competing SH2 domains for phosphopeptide ligands define “specificity space,” and underpins many functional pY mediated interactions within signaling networks. The degree of promiscuity exhibited and the dynamic range of affinities supported by individual domains or phosphopeptides is best resolved by a carefully executed and controlled quantitative high-throughput experiment. Here, I describe the fabrication and application of a cellulose–peptide conjugate microarray (CPCMA) platform to the quantitative analysis of SH2 domain specificity space. Included herein are instructions for optimal experimental design with special attention paid to common sources of systematic error, phosphopeptide SPOT synthesis, microarray fabrication, analyte titrations, data capture, and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lim WA, Pawson T (2010) Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142(5):661–667. doi:10.1016/j.cell.2010.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu BA, Engelmann BW, Nash PD (2012) The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. FEBS Lett 586(17):2597–2605. doi:10.1016/j.febslet.2012.04.054

    Article  CAS  PubMed  Google Scholar 

  3. Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD (2011) The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Sci Signal 4(202):ra83. doi:10.1126/scisignal.2002105

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(Database issue):D261–D270. doi:10.1093/nar/gkr1122

    Article  CAS  PubMed  Google Scholar 

  5. Liu BA, Jablonowski K, Raina M, Arce M, Pawson T, Nash PD (2006) The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 22(6):851–868. doi:10.1016/j.molcel.2006.06.001

    Article  PubMed  Google Scholar 

  6. Liu BA, Engelmann BW, Jablonowski K, Higginbotham K, Stergachis AB, Nash PD (2012) SRC homology 2 domain binding sites in insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome. Cell Commun Signal 10(1):27. doi:10.1186/1478-811X-10-27

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hlavacek WS, Faeder JR, Blinov ML, Perelson AS, Goldstein B (2003) The complexity of complexes in signal transduction. Biotechnol Bioeng 84(7):783–794

    Article  CAS  PubMed  Google Scholar 

  8. Pawson T, Warner N (2007) Oncogenic re-wiring of cellular signaling pathways. Oncogene 26(9):1268–1275. doi:10.1038/sj.onc.1210255

    Article  CAS  PubMed  Google Scholar 

  9. Gruenheid S, DeVinney R, Bladt F, Goosney D, Gelkop S, Gish GD, Pawson T, Finlay BB (2001) Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat Cell Biol 3(9):856–859. doi:10.1038/ncb0901-856, ncb0901-856 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Howard PL, Chia MC, Del Rizzo S, Liu FF, Pawson T (2003) Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins. Proc Natl Acad Sci U S A 100(20):11267–11272. doi:10.1073/pnas.1934711100, 1934711100 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Puntervoll P, Linding R, Gemund C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin DM, Ausiello G, Brannetti B, Costantini A, Ferre F, Maselli V, Via A, Cesareni G, Diella F, Superti-Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Kuster B, Helmer-Citterich M, Hunter WN, Aasland R, Gibson TJ (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31(13):3625–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Songyang Z, Cantley LC (1995) SH2 domain specificity determination using oriented phosphopeptide library. Methods Enzymol 254:523–535

    Article  CAS  PubMed  Google Scholar 

  13. Liu BA, Jablonowski K, Shah EE, Engelmann BW, Jones RB, Nash PD (2010) SH2 domains recognize contextual peptide sequence information to determine selectivity. Mol Cell Proteomics 9(11):2391–2404. doi:10.1074/mcp.M110.001586, doi:M110.001586 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu BA, Engelmann BW, Nash PD (2012) High-throughput analysis of peptide-binding modules. Proteomics 12(10):1527–1546. doi:10.1002/pmic.201100599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frank R (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48(42):9217–9232. doi:10.1016/S0040-4020(01)85612-X

    Article  CAS  Google Scholar 

  16. Dikmans A, Beutling U, Schmeisser E, Thiele S, Frank R (2006) SC2: a novel process for manufacturing multipurpose high-density chemical microarrays. QSAR Comb Sci 25(11):1069–1080. doi:10.1002/qsar.200640130

    Article  CAS  Google Scholar 

  17. Zubtsov DA, Savvateeva EN, Rubina AY, Pan'kov SV, Konovalova EV, Moiseeva OV, Chechetkin VR, Zasedatelev AS (2007) Comparison of surface and hydrogel-based protein microchips. Anal Biochem 368(2):205–213. doi:10.1016/j.ab.2007.04.040

    Article  CAS  PubMed  Google Scholar 

  18. Mori T, Yamanouchi G, Han X, Inoue Y, Shigaki S, Yamaji T, Sonoda T, Yasui K, Hayashi H, Niidome T, Katayama Y (2009) Signal-to-noise ratio improvement of peptide microarrays by using hyperbranched-polymer materials. J Appl Phys 105(10):102020

    Article  Google Scholar 

  19. Kusnezow W, Syagailo YV, Ruffer S, Baudenstiel N, Gauer C, Hoheisel JD, Wild D, Goychuk I (2006) Optimal design of microarray immunoassays to compensate for kinetic limitations: theory and experiment. Mol Cell Proteomics 5(9):1681–1696. doi:10.1074/mcp.T500035-MCP200

    Article  CAS  PubMed  Google Scholar 

  20. Kusnezow W, Syagailo YV, Ruffer S, Klenin K, Sebald W, Hoheisel JD, Gauer C, Goychuk I (2006) Kinetics of antigen binding to antibody microspots: strong limitation by mass transport to the surface. Proteomics 6(3):794–803. doi:10.1002/pmic.200500149

    Article  CAS  PubMed  Google Scholar 

  21. Engelmann BW, Kim Y, Wang M, Peters B, Rock RS, Nash PD (2014) The development and application of a quantitative peptide microarray based approach to protein interaction domain specificity space. Mol Cell Proteomics 13(12):3647–3662. doi:10.1074/mcp.O114.038695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30(4):e15

    Article  PubMed  PubMed Central  Google Scholar 

  23. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501. doi:10.1038/ng1032

    Article  CAS  PubMed  Google Scholar 

  24. Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31(4):265–273

    Article  CAS  PubMed  Google Scholar 

  25. Sboner A, Karpikov A, Chen G, Smith M, Mattoon D, Freeman-Cook L, Schweitzer B, Gerstein MB (2009) Robust-linear-model normalization to reduce technical variability in functional protein microarrays. J Proteome Res 8(12):5451–5464. doi:10.1021/pr900412k

    Article  CAS  PubMed  Google Scholar 

  26. Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2(12):3247–3256. doi:10.1038/nprot.2007.454

    Article  CAS  PubMed  Google Scholar 

  27. Toth GK, Kele Z, Varadi G (2007) Phosphopeptides—chemical synthesis, analysis, outlook and limitations. Curr Org Chem 11(5):409–426. doi:10.2174/138527207780059295

    Article  CAS  Google Scholar 

  28. Attard T, O’Brien-Simpson N, Reynolds E (2007) Synthesis of phosphopeptides in the Fmoc mode. Int J Pept Res Ther 13(4):447–468. doi:10.1007/s10989-007-9107-y

    Article  CAS  Google Scholar 

  29. McMurray JS, Coleman DR, Wang W, Campbell ML (2001) The synthesis of phosphopeptides. Biopolymers 60(1):3–31. doi:10.1002/1097-0282(2001)60:1<3::aid-bip1001>3.0.co;2-l

    Article  CAS  PubMed  Google Scholar 

  30. Zander N, Gausepohl H (2002) Chemistry of Fmoc peptide synthesis on membranes. In: Koch J, Mahler M (eds) Peptide arrays on membrane supports. Springer lab manuals. Springer, Berlin, Heidelberg, pp 23–39. doi:10.1007/978-3-662-09229-3_2

    Chapter  Google Scholar 

  31. Hilpert K, Winkler DF, Hancock RE (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc 2(6):1333–1349. doi:10.1038/nprot.2007.160

    Article  CAS  PubMed  Google Scholar 

  32. Kramer A, Reineke U, Dong L, Hoffmann B, Hoffmuller U, Winkler D, Volkmer-Engert R, Schneider-Mergener J (1999) Spot synthesis: observations and optimizations. J Pept Res 54(4):319–327

    Article  CAS  PubMed  Google Scholar 

  33. Winkler DF, Campbell WD (2008) The spot technique: synthesis and screening of peptide macroarrays on cellulose membranes. Methods Mol Biol 494:47–70. doi:10.1007/978-1-59745-419-3_4

    Article  CAS  PubMed  Google Scholar 

  34. Volkmer R (2009) Synthesis and application of peptide arrays: quo vadis SPOT technology. Chembiochem 10(9):1431–1442. doi:10.1002/cbic.200900078

    Article  CAS  PubMed  Google Scholar 

  35. Gausepohl H, Behn C (2002) Automated synthesis of solid-phase bound peptides. In: Koch J, Mahler M (eds) Peptide arrays on membrane supports. Springer lab manuals. Springer, Berlin, Heidelberg, pp 55–68. doi:10.1007/978-3-662-09229-3_4

    Chapter  Google Scholar 

  36. Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports—principles and applications. J Immunol Methods 267(1):13–26, doi:S0022175902001370 [pii]

    Article  CAS  PubMed  Google Scholar 

  37. Beutling U, Stading K, Stradal T, Frank R (2008) Large-scale analysis of protein-protein interactions using cellulose-bound peptide arrays. Adv Biochem Eng Biotechnol 110:115–152. doi:10.1007/10_2008_096

    CAS  PubMed  Google Scholar 

  38. Winkler DF, Hilpert K, Brandt O, Hancock RE (2009) Synthesis of peptide arrays using SPOT-technology and the CelluSpots-method. Methods Mol Biol 570:157–174. doi:10.1007/978-1-60327-394-7_5

    Article  CAS  PubMed  Google Scholar 

  39. Roller PP, Otaka A, Nomizu M, Smyth MS, Barchi JJ Jr, Burke TR Jr, Case RD, Wolf G, Shoelson SE (1994) Norleucine as a replacement for methionine in phosphatase-resistant linear and cyclic peptides which bind to p85 SH2 domains. Bioorg Med Chem Lett 4(15):1879–1882. doi:10.1016/S0960-894X(01)80389-9

    Article  CAS  Google Scholar 

  40. Bengtsson H, Jonsson G, Vallon-Christersson J (2004) Calibration and assessment of channel-specific biases in microarray data with extended dynamical range. BMC Bioinformatics 5:177. doi:10.1186/1471-2105-5-177

    Article  PubMed  PubMed Central  Google Scholar 

  41. Motulsky H, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press, New York

    Google Scholar 

  42. Findlay JW, Dillard RF (2007) Appropriate calibration curve fitting in ligand binding assays. AAPS J 9(2):E260–E267. doi:10.1208/aapsj0902029

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett W. Engelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Engelmann, B.W. (2017). High-Throughput Quantification of SH2 Domain–Phosphopeptide Interactions with Cellulose–Peptide Conjugate Microarrays. In: Machida, K., Liu, B. (eds) SH2 Domains. Methods in Molecular Biology, vol 1555. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6762-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6762-9_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6760-5

  • Online ISBN: 978-1-4939-6762-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics