Skip to main content

SlipChip Device for Digital Nucleic Acid Amplification

  • Protocol
  • First Online:
Microchip Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1547))

Abstract

Digital nucleic acid amplification (Digital NAA) quantifies nucleic acid by compartmentalizing a sample of DNA or RNA into a large number of discrete partitions and performing parallel nucleic acid amplification, such as polymerase chain reaction (PCR) or isothermal amplification reactions. With the counts of positive wells, total number of wells, and volumes of wells, the concentration of the target nucleic acid in the sample can be quantified. Digital NAA is considered increasingly powerful for ultra-sensitive detection and accurate quantification of nucleic acid for biological research and potentially medical diagnostics. Here, we describe glass SlipChip devices to perform digital NAA without cumbersome manual manipulation or complex fluidic control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker M (2012) Digital PCR hits its stride. Nat Methods 9(6):541–544

    Article  CAS  Google Scholar 

  2. Huggett JF et al (2013) The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem 59(6):892–902

    Article  CAS  Google Scholar 

  3. Witters D et al (2014) Digital biology and chemistry. Lab Chip 14(17):3225–3232

    Article  CAS  Google Scholar 

  4. Hindson BJ et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610

    Article  CAS  Google Scholar 

  5. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467

    Article  CAS  Google Scholar 

  6. Shen F, Du W, Kreutz JE, Fok A, Ismagilov RF (2010) Digital PCR on a SlipChip. Lab Chip 10(20):2666–2672

    Article  CAS  Google Scholar 

  7. Shen F et al (2011) Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load. J Am Chem Soc 133(44):17705–17712

    Article  CAS  Google Scholar 

  8. Shen F et al (2011) Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip. Anal Chem 83(9):3533–3540

    Article  CAS  Google Scholar 

  9. Sun B et al (2013) Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol. Anal Chem 85(3):1540–1546

    Article  CAS  Google Scholar 

  10. Du W, Li L, Nichols KP, Ismagilov RF (2009) SlipChip. Lab Chip 9(16):2286–2292

    Article  CAS  Google Scholar 

  11. Shen F et al (2010) Nanoliter multiplex pcr arrays on a slipchip. Anal Chem 82(11):4606–4612

    Article  CAS  Google Scholar 

  12. Sun B et al (2014) Measuring fate and rate of single-molecule competition of amplification and restriction digestion, and its use for rapid genotyping tested with hepatitis C viral RNA. Angew Chemie Int Ed 53(31):8088–8092

    Article  CAS  Google Scholar 

  13. Li L, Du W, Ismagilov R (2010) Multiparameter screening on slipchip used for nanoliter protein crystallization combining free interface diffusion and microbatch methods. J Am Chem Soc 132(1):112–119

    Article  CAS  Google Scholar 

  14. Liu W, Chen D, Du W, Nichols KP, Ismagilov RF (2010) SlipChip for immunoassays in nanoliter volumes. Anal Chem 82(8):3276–3282

    Article  CAS  Google Scholar 

  15. Ge S, Liu W, Schlappi T, Ismagilov RF (2014) Digital, ultrasensitive, end-point protein measurements with large dynamic range via brownian trapping with drift. J Am Chem Soc 136(42):14662–14665

    Article  CAS  Google Scholar 

  16. Begolo S, Shen F, Ismagilov RF (2013) A microfluidic device for dry sample preservation in remote settings. Lab Chip 13(22):4331–4342

    Article  CAS  Google Scholar 

  17. Ma L et al (2014) Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in human microbiome project’s most wanted taxa. Proc Natl Acad Sci U S A 111(27):9768–9773

    Article  CAS  Google Scholar 

  18. Zhao Y, Pereira F, deMello AJ, Morgan H, Niu X (2014) Droplet-based in situ compartmentalization of chemically separated components after isoelectric focusing in a Slipchip. Lab Chip 14(3):555–561

    Article  Google Scholar 

  19. Li L, Karymov MA, Nichols KP, Ismagilov RF (2010) Dead-end filling of slipchip evaluated theoretically and experimentally as a function of the surface chemistry and the gap size between the plates for lubricated and dry slipchips. Langmuir 26(14):12465–12471

    Article  CAS  Google Scholar 

  20. Begolo S, Zhukov DV, Selck DA, Li L, Ismagilov RF (2014) The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications. Lab Chip 14(24):4616–4628

    Article  CAS  Google Scholar 

  21. Selck DA, Karymov MA, Sun B, Ismagilov RF (2013) Increased robustness of single-molecule counting with microfluidics, digital isothermal amplification, and a mobile phone versus real-time kinetic measurements. Anal Chem 85(22):11129–11136

    Article  CAS  Google Scholar 

  22. Kreutz JE et al (2011) Theoretical design and analysis of multivolume digital assays with wide dynamic range validated experimentally with microfluidic digital PCR. Anal Chem 83(21):8158–8168

    Article  CAS  Google Scholar 

  23. Mazutis L et al (2009) Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal Chem 81(12):4813–4821

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Shen, F. (2017). SlipChip Device for Digital Nucleic Acid Amplification. In: Taly, V., Viovy, JL., Descroix, S. (eds) Microchip Diagnostics. Methods in Molecular Biology, vol 1547. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6734-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6734-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6732-2

  • Online ISBN: 978-1-4939-6734-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics