Skip to main content

Investigating Effects of Steroid Hormones on Lateralization of Brain and Behavior

  • Protocol
  • First Online:
Lateralized Brain Functions

Part of the book series: Neuromethods ((NM,volume 122))

Abstract

Steroid hormones have been proposed to influence the development of lateralization of brain and behavior. We briefly describe the available hypotheses explaining this influence. These are all based on human data. However, experimental testing is almost exclusively limited to other animal models. As a consequence, different research fields investigate the relationship between steroid hormones and lateralization, all using different techniques and study species. The aim of this chapter is to present an overview of available techniques to study this relationship with an interdisciplinary approach. To this end we describe the basics of hormone secretion and mechanisms of action for androgens, estrogens, progesterone, and corticosteroids. Next, general issues related to hormone sampling and hormone assays are discussed. We then present a critical overview of correlational and experimental methods to study the influence of prenatal and postnatal hormones on lateralization. These methods include hormone measurement in amniotic fluid, saliva, urine, feces, and blood plasma or serum of fetus, mother, and umbilical cord. We also discuss hormone-mediated maternal effects, the manipulation of hormone levels in the embryo or mother, hormone treatment in persons with Gender Dysphoria, and the 2D:4D finger length ratio as a proxy for prenatal testosterone exposure. We argue that lateralization can and should be studied at different levels of organization. Namely, structural and functional brain lateralization, perception and cognition, lateralized motor output and performance. We present tests for these different levels and argue that keeping these levels apart is important, as well as realizing that lateralization and the hormonal influence on it may be different at different levels, for different functions and different species. We conclude that the study of hormonal influences on lateralization of brain and behavior has not yet exploited the knowledge and wide array of techniques currently available, leaving an interesting research field substantially under-explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfannkuche KA, Bouma A, Groothuis TGG (2009) Does testosterone affect lateralization of brain and behaviour? A meta-analysis in humans and other animal species. Philos Trans R Soc B Biol Sci 364:929–942. doi:10.1098/rstb.2008.0282

    Article  CAS  Google Scholar 

  2. Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM (1998) Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol 19:323–362. doi:10.1006/frne.1998.0171

    Article  CAS  PubMed  Google Scholar 

  3. Schaafsma SM, Riedstra BJ, Pfannkuche KA et al (2009) Epigenesis of behavioural lateralization in humans and other animals. Philos Trans R Soc Lond B Biol Sci 364:915–927. doi:10.1098/rstb.2008.0244

    Article  CAS  PubMed  Google Scholar 

  4. Hardyck C, Petrinovich LF (1977) Left-handedness. Psychol Bull 84:385–404. doi:10.1037/0033-2909.84.3.385

    Article  CAS  PubMed  Google Scholar 

  5. Jordan HE (1911) The inheritance of left-handedness. Am Breeders Mag 19–29:113–124

    Google Scholar 

  6. Annett M (1972) The distribution of manual asymmetry. Br J Psychol 63:343–358. doi:10.1111/j.2044-8295.1972.tb01282.x

    Article  CAS  PubMed  Google Scholar 

  7. Annett M (1985) Left, right, hand and brain: the right shift theory. Erlbaum, VA

    Google Scholar 

  8. Annett M (2002) Handedness and brain asymmetry: the right shift theory. Psychology Press, East Sussex

    Google Scholar 

  9. McManus IA (1985) Handedness, language dominance and aphasia: a genetic model. http://journals.cambridge.org/action/displayFulltext?type=1&fid=7057904&jid=PMS&volumeId=8&issueId=-1&aid=7057900&bodyId=&membershipNumber=&societyETOCSession=. Accessed 4 Jan 2016

  10. McManus IA (1999) Handedness, cerebral lateralization and the evolution of language. In: Corballis MC, Lea SEG (eds) The descent of mind: psychological perspectives on homonid evolution. Oxford University Press, Oxford, pp 194–217

    Google Scholar 

  11. Klar AJS (1996) A single locus, RGHT, specifies preference for hand utilization in humans. Cold Spring Harb Symp Quant Biol 61:59–65. doi:10.1101/SQB.1996.061.01.009

    Article  CAS  PubMed  Google Scholar 

  12. Somers M, Ophoff RA, Aukes MF et al (2015) Linkage analysis in a Dutch population isolate shows no major gene for left-handedness or atypical language lateralization. J Neurosci 35:8730–8736. doi:10.1523/JNEUROSCI.3287-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corballis MC (2014) Left brain, right brain: facts and fantasies. PLoS Biol 12:e1001767. doi:10.1371/journal.pbio.1001767

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lien Y-J, Chen WJ, Hsiao P-C, Tsuang H-C (2015) Estimation of heritability for varied indexes of handedness. Laterality 20:469–482. doi:10.1080/1357650X.2014.1000920

    Article  PubMed  Google Scholar 

  15. Arning L, Ocklenburg S, Schulz S et al (2015) Handedness and the X chromosome: the role of androgen receptor CAG-repeat length. Sci Rep 5:8325. doi:10.1038/srep08325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nelson RJ (2005) An introduction to behavioral endocrinology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  17. Adkins-Regan E (2005) Hormones and animal social behavior. Princeton University Press, Princeton

    Google Scholar 

  18. Seredynski AL, Balthazart J, Ball GF, Cornil CA (2015) Estrogen receptor β activation rapidly modulates male sexual motivation through the transactivation of metabotropic glutamate receptor 1a. J Neurosci 35:13110–13123. doi:10.1523/JNEUROSCI.2056-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eberling P, Koivisto VA (1994) Physiological importance of dehydroepiandrosterone. Lancet 343:1479–1481. doi:10.1016/S0140-6736(94)92587-9

    Article  Google Scholar 

  20. Nair KS, Rizza RA, O’Brien P et al (2006) DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med 355:1647–1659. doi:10.1056/NEJMoa054629

    Article  CAS  PubMed  Google Scholar 

  21. Soma KK (2006) Testosterone and aggression: berthold, birds and beyond. J Neuroendocrinol 18:543–551. doi:10.1111/j.1365-2826.2006.01440.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weinstock M (2007) Gender differences in the effects of prenatal stress on brain development and behaviour. Neurochem Res 32:1730–1740. doi:10.1007/s11064-007-9339-4

    Article  CAS  PubMed  Google Scholar 

  23. Anderson DK, Rhees RW, Fleming DE (1985) Effects of prenatal stress on differentiation of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of the rat brain. Brain Res 332:113–118. doi:10.1016/0006-8993(85)90394-4

    Article  CAS  PubMed  Google Scholar 

  24. Kaiser S, Kruijver FPM, Swaab DF, Sachser N (2003) Early social stress in female guinea pigs induces a masculinization of adult behavior and corresponding changes in brain and neuroendocrine function. Behav Brain Res 144:199–210. doi:10.1016/S0166-4328(03)00077-9

    Article  CAS  PubMed  Google Scholar 

  25. Arnold AP, Breedlove SM (1985) Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Horm Behav 19:469–498. doi:10.1016/0018-506X(85)90042-X

    Article  CAS  PubMed  Google Scholar 

  26. McCarthy MM, Arnold AP (2011) Reframing sexual differentiation of the brain. Nat Neurosci 14:677–683. doi:10.1038/nn.2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Romeo RD (2003) Puberty: a period of both organizational and activational effects of steroid hormones on neurobehavioural development. J Neuroendocrinol 15:1185–1192. doi:10.1111/j.1365-2826.2003.01106.x

    Article  CAS  PubMed  Google Scholar 

  28. Hines M, Shipley C (1984) Prenatal exposure to diethylstilbestrol (DES) and the development of sexually dimorphic cognitive abilities and cerebral lateralization. Dev Psychol 20:81–94. doi:10.1037/0012-1649.20.1.81

    Article  Google Scholar 

  29. Geschwind N, Galaburda AM (1985) Cerebral lateralization: biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Arch Neurol 42:428. doi:10.1001/archneur.1985.04060050026008

    Article  CAS  PubMed  Google Scholar 

  30. Witelson SF, Nowakowski RS (1991) Left out axons make men right: a hypothesis for the origin of handedness and functional asymmetry. Neuropsychologia 29:327–333

    Article  CAS  PubMed  Google Scholar 

  31. Henriksen R, Rettenbacher S, Groothuis TGG (2013) Maternal corticosterone elevation during egg formation in chickens (Gallus gallus domesticus) influences offspring traits, partly via prenatal undernutrition. Gen Comp Endocrinol 191:83–91. doi:10.1016/j.ygcen.2013.05.028

    Article  CAS  PubMed  Google Scholar 

  32. Freire R, van Dort S, Rogers LJ (2006) Pre- and post-hatching effects of corticosterone treatment on behavior of the domestic chick. Horm Behav 49:157–165. doi:10.1016/j.yhbeh.2005.05.015

    Article  CAS  PubMed  Google Scholar 

  33. Shirtcliff EA, Granger DA, Schwartz E, Curran MJ (2001) Use of salivary biomarkers in biobehavioral research: cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology 26:165–173

    Article  CAS  PubMed  Google Scholar 

  34. Goymann W (2005) Noninvasive monitoring of hormones in bird droppings: physiological validation, sampling, extraction, sex differences, and the influence of diet on hormone metabolite levels. Ann N Y Acad Sci 1046:35–53. doi:10.1196/annals.1343.005

    Article  CAS  PubMed  Google Scholar 

  35. Gow R, Thomson S, Rieder M et al (2010) An assessment of cortisol analysis in hair and its clinical applications. Forensic Sci Int 196:32–37. doi:10.1016/j.forsciint.2009.12.040

    Article  CAS  PubMed  Google Scholar 

  36. Cook NJ (2012) Review: Minimally invasive sampling media and the measurement of corticosteroids as biomarkers of stress in animals. Can J Anim Sci 92:227–259. doi:10.4141/cjas2012-045

    Article  CAS  Google Scholar 

  37. von Engelhardt N, Groothuis TGG (2005) Measuring steroid hormones in avian eggs. Ann N Y Acad Sci 1046:181–192. doi:10.1196/annals.1343.015

    Article  Google Scholar 

  38. Pfannkuche KA, Gahr M, Weites IM et al (2011) Examining a pathway for hormone mediated maternal effects—yolk testosterone affects androgen receptor expression and endogenous testosterone production in young chicks (Gallus gallus domesticus). Gen Comp Endocrinol 172:487–493. doi:10.1016/j.ygcen.2011.04.014

    Article  CAS  PubMed  Google Scholar 

  39. vom Saal FS (1990) Paradoxical effects of maternal stress on fetal steroids and postnatal reproductive traits in female mice from different intrauterine positions. Biol Reprod 43:751–761. doi:10.1095/biolreprod43.5.751

    Article  CAS  PubMed  Google Scholar 

  40. Winter JSD, Faiman C, Reyes FI (1977) Morphogenesis and malformations of the genital system. A. Liss, New York

    Google Scholar 

  41. Wilson CA, Davies DC (2007) The control of sexual differentiation of the reproductive system and brain. Reproduction 133:331–359. doi:10.1530/REP-06-0078

    Article  CAS  PubMed  Google Scholar 

  42. Knickmeyer RC, Baron-Cohen S (2006) Fetal testosterone and sex differences. Early Hum Dev 82:755–760. doi:10.1016/j.earlhumdev.2006.09.014

    Article  CAS  Google Scholar 

  43. Judd HL, Robinson JD, Young PE, Jones OW (1976) Amniotic fluid testosterone levels in midpregnancy. Obstet Gynecol 48:690–692

    CAS  PubMed  Google Scholar 

  44. Schindler AE (1982) Hormones in human amniotic fluid. Springer, Heidelberg

    Book  Google Scholar 

  45. van de Beek C, Thijssen JHH, Cohen-Kettenis PT et al (2004) Relationships between sex hormones assessed in amniotic fluid, and maternal and umbilical cord serum: what is the best source of information to investigate the effects of fetal hormonal exposure? Horm Behav 46:663–669. doi:10.1016/j.yhbeh.2004.06.010

    Article  PubMed  Google Scholar 

  46. Finegan JA, Bartleman B, Wong PY (1989) A window for the study of prenatal sex hormone influences on postnatal development. J Genet Psychol 150:101–112. doi:10.1080/00221325.1989.9914580

    Article  CAS  PubMed  Google Scholar 

  47. Robinson JD, Judd HL, Young PE et al (1977) Amniotic fluid androgens and estrogens in midgestation. J Clin Endocrinol Metab 45:755–761. doi:10.1210/jcem-45-4-755

    Article  CAS  PubMed  Google Scholar 

  48. Sikich L, Todd RD (1988) Are the neurodevelopmental effects of gonadal hormones related to sex differences in psychiatric illnesses? Psychiatr Dev 6:277–309

    CAS  PubMed  Google Scholar 

  49. Groothuis TGG, von Engelhardt N (2005) Investigating maternal hormones in avian eggs: measurement, manipulation, and interpretation. Ann N Y Acad Sci 1046:168–180. doi:10.1196/annals.1343.014

    Article  CAS  PubMed  Google Scholar 

  50. Schaafsma SM, Groothuis TGG (2012) Sex-specific effects of maternal testosterone on lateralization in a cichlid fish. Anim Behav 83:437–443. doi:10.1016/j.anbehav.2011.11.015

    Article  Google Scholar 

  51. Ford JJ (1980) Serum testosterone concentrations in embryonic and fetal pigs during sexual differentiation. Biol Reprod 23:583–587. doi:10.1095/biolreprod23.3.583

    Article  CAS  PubMed  Google Scholar 

  52. Hönekopp J, Bartholdt L, Beier L, Liebert A (2007) Second to fourth digit length ratio (2D:4D) and adult sex hormone levels: new data and a meta-analytic review. Psychoneuroendocrinology 32:313–321

    Article  PubMed  Google Scholar 

  53. Putz DA, Gaulin SJC, Sporter RJ, McBurney DH (2004) Sex hormones and finger length. what does 2D:4D indicate? Evol Hum Behav 25:182–199. doi:10.1016/j.evolhumbehav.2004.03.005

    Article  Google Scholar 

  54. Lutchmaya S, Baron-Cohen S, Raggatt P et al (2004) 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Hum Dev 77:23–28. doi:10.1016/j.earlhumdev.2003.12.002

    Article  CAS  PubMed  Google Scholar 

  55. Ventura T, Gomes MC, Pita A et al (2013) Digit ratio (2D:4D) in newborns: influences of prenatal testosterone and maternal environment. Early Hum Dev 89:107–112. doi:10.1016/j.earlhumdev.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  56. McFadden D, Bracht MS (2005) Sex differences in the relative lengths of metacarpals and metatarsals in gorillas and chimpanzees. Horm Behav 47:99–111. doi:10.1016/j.yhbeh.2004.08.013

    Article  PubMed  Google Scholar 

  57. Auger J, Le Denmat D, Berges R et al (2013) Environmental levels of oestrogenic and antiandrogenic compounds feminize digit ratios in male rats and their unexposed male progeny. Proc Biol Sci 280:20131532. doi:10.1098/rspb.2013.1532

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dean A, Sharpe RM (2013) Clinical review: Anogenital distance or digit length ratio as measures of fetal androgen exposure: relationship to male reproductive development and its disorders. J Clin Endocrinol Metab 98:2230–2238. doi:10.1210/jc.2012-4057

    Article  CAS  PubMed  Google Scholar 

  59. Nagy G, Blázi G, Hegyi G, Török J (2016) Side-specific effect of yolk testosterone elevation on second-to-fourth digit ratio in a wild passerine. Naturwissenschaften 103:4. doi:10.1007/s00114-015-1328-x

    Article  PubMed  Google Scholar 

  60. Ruuskanen S, Helle S, Ahola M et al (2011) Digit ratios have poor indicator value in a wild bird population. Behav Ecol Sociobiol 65:983–994. doi:10.1007/s00265-010-1099-5

    Article  PubMed  Google Scholar 

  61. Romano M, Rubolini D, Martinelli R et al (2005) Experimental manipulation of yolk testosterone affects digit length ratios in the ring-necked pheasant (Phasianus colchicus). Horm Behav 48:342–346. doi:10.1016/j.yhbeh.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  62. Zielinski WJ, vom Saal FS, Vandenbergh JG (1992) The effect of intrauterine position on the survival, reproduction and home range size of female house mice (Mus musculus). Behav Ecol Sociobiol 30:185–191. doi:10.1007/BF00166702

    Article  Google Scholar 

  63. Clark M, Galef B (1998) Effects of intrauterine position on the behavior and genital morphology of litter-bearing rodents. Dev Neuropsychol 14:197–211

    Article  Google Scholar 

  64. Tapp AL, Maybery MT, Whitehouse AJO (2011) Evaluating the twin testosterone transfer hypothesis: a review of the empirical evidence. Horm Behav 60:713–722. doi:10.1016/j.yhbeh.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  65. Okuliarova M, Groothuis TGG, Skrobánek P, Zeman M (2011) Experimental evidence for genetic heritability of maternal hormone transfer to offspring. Am Nat 177:824–834. doi:10.1086/659996

    Article  PubMed  Google Scholar 

  66. Costantini D, Metcalfe NB, Monaghan P (2010) Ecological processes in a hormetic framework. Ecol Lett 13:1435–1447. doi:10.1111/j.1461-0248.2010.01531.x

    Article  PubMed  Google Scholar 

  67. Del Giudice M (2012) Fetal programming by maternal stress: insights from a conflict perspective. Psychoneuroendocrinology 37:1614–1629. doi:10.1016/j.psyneuen.2012.05.014

    Article  PubMed  Google Scholar 

  68. von Engelhardt N, Groothuis TGG (2011) Hormones and reproduction of vertebrates. doi:10.1016/B978-0-12-374929-1.10004-6

  69. Henriksen R, Rettenbacher S, Groothuis TGG (2011) Prenatal stress in birds: pathways, effects, function and perspectives. Neurosci Biobehav Rev 35:1484–1501. doi:10.1016/j.neubiorev.2011.04.010

    Article  PubMed  Google Scholar 

  70. Rogers LJ, Deng C (2005) Corticosterone treatment of the chick embryo affects light-stimulated development of the thalamofugal visual pathway. Behav Brain Res 159:63–71. doi:10.1016/j.bbr.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  71. Schwarz IM, Rogers LJ (1992) Testosterone: a role in the development of brain asymmetry in the chick. Neurosci Lett 146:167–170. doi:10.1016/0304-3940(92)90069-J

    Article  CAS  PubMed  Google Scholar 

  72. Groothuis TGG, Schwabl H (2008) Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Philos Trans R Soc Lond B Biol Sci 363:1647–1661. doi:10.1098/rstb.2007.0007

    Article  CAS  PubMed  Google Scholar 

  73. Hines M (2006) Prenatal testosterone and gender-related behaviour. Eur J Endocrinol 155(Suppl):S115–S121. doi:10.1530/eje.1.02236

    Article  CAS  PubMed  Google Scholar 

  74. Hodgetts S, Weis S, Hausmann M (2015) Sex hormones affect language lateralisation but not cognitive control in normally cycling women. Horm Behav 74:194–200. doi:10.1016/j.yhbeh.2015.06.019

    Article  CAS  PubMed  Google Scholar 

  75. Fischer H, Sandblom J, Gavazzeni J et al (2005) Age-differential patterns of brain activation during perception of angry faces. Neurosci Lett 386:99–104. doi:10.1016/j.neulet.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  76. Wright ND, Bahrami B, Johnson E et al (2012) Testosterone disrupts human collaboration by increasing egocentric choices. Proc Biol Sci 279:2275–2280. doi:10.1098/rspb.2011.2523

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kreukels BPC, Cohen-Kettenis PT (2011) Puberty suppression in gender identity disorder: the Amsterdam experience. Nat Rev Endocrinol 7:466–472. doi:10.1038/nrendo.2011.78

    Article  CAS  PubMed  Google Scholar 

  78. Hembree WC, Cohen-Kettenis P, Delemarre-van de Waal HA et al (2009) Endocrine treatment of transsexual persons: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 94:3132–3154. doi:10.1210/jc.2009-0345

    Article  CAS  PubMed  Google Scholar 

  79. Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44:291–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45:13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brenowitz EA (2004) Plasticity of the adult avian song control system. Ann N Y Acad Sci 1016:560–585. doi:10.1196/annals.1298.006

    Article  CAS  PubMed  Google Scholar 

  82. Moorman S, Gobes SMH, Kuijpers M et al (2012) Human-like brain hemispheric dominance in birdsong learning. Proc Natl Acad Sci U S A 109:12782–12787. doi:10.1073/pnas.1207207109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Neveu PJ, Liège S, Sarrieau A (1998) Asymmetrical distribution of hippocampal mineralocorticoid receptors depends on lateralization in mice. Neuroimmunomodulation 5:16–21

    Article  CAS  PubMed  Google Scholar 

  84. Gahr M (2007) Sexual differentiation of the vocal control system of birds. Adv Genet 59:67–105. doi:10.1016/S0065-2660(07)59003-6

    CAS  PubMed  Google Scholar 

  85. Adret P, Rogers LJ (1989) Sex difference in the visual projections of young chicks: a quantitative study of the thalamofugal pathway. Brain Res 478:59–73. doi:10.1016/0006-8993(89)91477-7

    Article  CAS  PubMed  Google Scholar 

  86. Fink M, Wadsak W, Savli M et al (2009) Lateralization of the serotonin-1A receptor distribution in language areas revealed by PET. Neuroimage 45:598–605. doi:10.1016/j.neuroimage.2008.11.033

    Article  PubMed  Google Scholar 

  87. Vernaleken I, Weibrich C, Siessmeier T et al (2007) Asymmetry in dopamine D(2/3) receptors of caudate nucleus is lost with age. Neuroimage 34:870–878. doi:10.1016/j.neuroimage.2006.10.013

    Article  PubMed  Google Scholar 

  88. Wang H, Wang X, Wetzel W, Scheich H (2006) Rapid-rate transcranial magnetic stimulation of animal auditory cortex impairs short-term but not long-term memory formation. Eur J Neurosci 23:2176–2184. doi:10.1111/j.1460-9568.2006.04745.x

    Article  PubMed  Google Scholar 

  89. Rotenberg A, Muller PA, Vahabzadeh-Hagh AM et al (2010) Lateralization of forelimb motor evoked potentials by transcranial magnetic stimulation in rats. Clin Neurophysiol 121:104–108. doi:10.1016/j.clinph.2009.09.008

    Article  PubMed  Google Scholar 

  90. Willis MW, Ketter TA, Kimbrell TA et al (2002) Age, sex and laterality effects on cerebral glucose metabolism in healthy adults. Psychiatry Res 114:23–37

    Article  CAS  PubMed  Google Scholar 

  91. Stroobant N, Vingerhoets G (2000) Transcranial Doppler ultrasonography monitoring of cerebral hemodynamics during performance of cognitive tasks: a review. Neuropsychol Rev 10:213–231

    Article  CAS  PubMed  Google Scholar 

  92. Deppe M, Ringelstein EB, Knecht S (2004) The investigation of functional brain lateralization by transcranial Doppler sonography. Neuroimage 21:1124–1146. doi:10.1016/j.neuroimage.2003.10.016

    Article  PubMed  Google Scholar 

  93. Honing H, Merchant H, Háden GP et al (2012) Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat. PLoS One 7:e51369. doi:10.1371/journal.pone.0051369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rowan A, Liégeois F, Vargha-Khadem F et al (2004) Cortical lateralization during verb generation: a combined ERP and fMRI study. Neuroimage 22:665–675. doi:10.1016/j.neuroimage.2004.01.034

    Article  PubMed  Google Scholar 

  95. Rogers LJ, Vallortigara G, Andrew RJ (2015) Divided brains: the biology and behaviour of brain asymmetries. Cambridge University Press, Cambridge

    Google Scholar 

  96. Cashmore L, Uomini N, Chapelain A (2008) The evolution of handedness in humans and great apes: a review and current issues. J Anthropol Sci 86:7–35

    PubMed  Google Scholar 

  97. Lust JM, Geuze RH, Groothuis AGG, Bouma A (2011) Functional cerebral lateralization and dual-task efficiency-testing the function of human brain lateralization using fTCD. Behav Brain Res 217:293–301. doi:10.1016/j.bbr.2010.10.029

    Article  CAS  PubMed  Google Scholar 

  98. Lust JM, Geuze RH, Groothuis AGG et al (2011) Driving performance during word generation—testing the function of human brain lateralization using fTCD in an ecologically relevant context. Neuropsychologia 49:2375–2383. doi:10.1016/j.neuropsychologia.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  99. Hirnstein M, Leask S, Rose J, Hausmann M (2010) Disentangling the relationship between hemispheric asymmetry and cognitive performance. Brain Cogn 73:119–127. doi:10.1016/j.bandc.2010.04.002

    Article  PubMed  Google Scholar 

  100. Stroobant N, van Boxstael J, Vingerhoets G (2011) Language lateralization in children: a functional transcranial Doppler reliability study. J Neurolinguistics 24:14–24. doi:10.1016/j.jneuroling.2010.07.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ton G. G. Groothuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Beking, T., Geuze, R.H., Groothuis, T.G.G. (2017). Investigating Effects of Steroid Hormones on Lateralization of Brain and Behavior. In: Rogers, L., Vallortigara, G. (eds) Lateralized Brain Functions. Neuromethods, vol 122. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6725-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6725-4_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6723-0

  • Online ISBN: 978-1-4939-6725-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics