Skip to main content

Brain Mapping Using the Immediate Early Gene Zenk

  • Protocol
  • First Online:
Lateralized Brain Functions

Part of the book series: Neuromethods ((NM,volume 122))

  • 1268 Accesses

Abstract

Several lines of evidence show that induction of immediate early genes (IEGs) is a crucial step in the regulation of long-term plasticity-related changes at the cellular level. The term immediate early gene aptly characterizes the fact that these genes are induced rapidly, within minutes, and transiently following neuronal activation. This is due to the fact that their activation is not dependent on de novo protein synthesis as other, late response genes require. Such rapid induction of these genes offers a unique and powerful way to examine how a specific stimulus can lead to long-term cellular changes. By mapping IEG mRNA activity or the resulting protein expression, researchers have been able to investigate patterns of brain activation in response to various stimuli and in different behavioral paradigms. In addition, IEG activity can be used to examine structural and functional aspects of brain hemisphere lateralization. Several IEGs will be discussed in this chapter but our specific methods will focus on Zenk, a widely studied IEG in birds that has been used to identify specific brain regions critical for song learning, memory, homing behavior, and conspecific recognition. Here, we describe how standard immunohistochemical techniques and widely available imaging software can be used to visualize ZENK protein expression at the cellular level and at a macro level, such as whole sagittal or coronal brain sections. These visualization techniques provide the investigator with a powerful tool to examine asymmetries in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cole AJ et al (1990) Rapid rise in transcription factor mRNAs in rat-brain after electroshock-induced seizures. J Neurochem 55(6):1920–1927

    Article  CAS  PubMed  Google Scholar 

  2. Morgan JI et al (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237(4811):192–197

    Article  CAS  PubMed  Google Scholar 

  3. Beckmann AM, Wilce PA (1997) Egr transcription factors in the nervous system. Neurochem Int 31(4):477–510

    Article  CAS  PubMed  Google Scholar 

  4. Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Rev 23(3):237–256

    Article  CAS  PubMed  Google Scholar 

  5. Okuno H (2011) Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res 69(3):175–186

    Article  CAS  PubMed  Google Scholar 

  6. Perez-Cadahia B, Drobic B, Davie JR (2011) Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol 89(1):61–73

    Article  CAS  PubMed  Google Scholar 

  7. Burmeister SS, Fernald RD (2005) Evolutionary conservation of the Egr-1 immediate-early gene response in a teleost. J Comp Neurol 481(2):220–232

    Article  CAS  PubMed  Google Scholar 

  8. Harvey-Girard E et al (2010) Long-term recognition memory of individual conspecifics is associated with telencephalic expression of egr-1 in the electric fish Apteronotus leptorhynchus. J Comp Neurol 518(14):2666–2692

    CAS  PubMed  Google Scholar 

  9. Chakraborty M, Mangiamele LA, Burmeister SS (2010) Neural activity patterns in response to interspecific and intraspecific variation in mating calls in the tungara frog. PLoS One 5(9):e12898

    Article  PubMed  PubMed Central  Google Scholar 

  10. Patzke N et al (2010) Navigation-induced ZENK expression in the olfactory system of pigeons (Columba livia). Eur J Neurosci 31(11):2062–2072

    Article  PubMed  Google Scholar 

  11. Zangenehpour S, Chaudhuri A (2002) Differential induction and decay curves of c-fos and zif268 revealed through dual activity maps. Mol Brain Res 109(1–2):221–225

    Article  CAS  PubMed  Google Scholar 

  12. Alaux C, Robinson GE (2007) Alarm pheromone induces immediate-early gene expression and slow behavioral response in honey bees. J Chem Ecol 33(7):1346–1350

    Article  CAS  PubMed  Google Scholar 

  13. Alaux C et al (2009) Honey bee aggression supports a link between gene regulation and behavioral evolution. Proc Natl Acad Sci U S A 106(36):15400–15405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kiya T, Kunieda T, Kubo T (2007) Increased neural activity of a mushroom body neuron subtype in the brains of forager honeybees. PLoS One 2(4):e371

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ugajin A, Kunieda T, Kubo T (2013) Identification and characterization of an Egr ortholog as a neural immediate early gene in the European honeybee (Apis mellifera L.). Febs Lett 587(19):3224–3230

    Article  CAS  PubMed  Google Scholar 

  16. Lutz CC, Robinson GE (2013) Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight. J Exp Biol 216(11):2031–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McNeill MS, Robinson GE (2015) Voxel-based analysis of the immediate early gene, c-jun, in the honey bee brain after a sucrose stimulus. Insect Mol Biol 24(3):377–390

    Article  CAS  PubMed  Google Scholar 

  18. Long KD, Salbaum JM (1998) Evolutionary conservation of the immediate-early gene ZENK. Mol Biol Evol 15(3):284–292

    Article  CAS  PubMed  Google Scholar 

  19. Terleph TA, Tremere LA (2006) The use of immediate early genes as mapping tools for neuronal activation: concepts and methods. In: Pinaud R, Tremere LA (eds) Immediate early genes in sensory processing, cognitive performance and neurological disorders. Springer US, Boston, MA, pp 1–10

    Google Scholar 

  20. Mehlhorn J, Haastert B, Rehkaemper G (2010) Asymmetry of different brain structures in homing pigeons with and without navigational experience. J Exp Biol 213(13):2219–2224

    Article  PubMed  Google Scholar 

  21. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: Advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28(4):575

    PubMed  Google Scholar 

  22. Goelet P et al (1986) The long and the short of long-term memory-a molecular framework. Nature 322(6078):419–422

    Article  CAS  Google Scholar 

  23. Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12(11):459–462

    Article  CAS  PubMed  Google Scholar 

  24. Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4(4):477–485

    Article  CAS  PubMed  Google Scholar 

  25. Tischmeyer W, Grimm R (1999) Activation of immediate early genes and memory formation. Cell Mol Life Sci 55(4):564–574

    Article  CAS  PubMed  Google Scholar 

  26. Clayton DF (2000) The genomic action potential. Neurobiol Learn Mem 74(3):185–216

    Article  CAS  PubMed  Google Scholar 

  27. Guzowski JF et al (1999) Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2(12):1120–1124

    Article  CAS  PubMed  Google Scholar 

  28. Rosen JB et al (1998) Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning. Brain Res 796(1–2):132–142

    Article  CAS  PubMed  Google Scholar 

  29. Sadananda M, Bischof HJ (2002) Enhanced fos expression in the zebra finch (Taeniopygia guttata) brain following first courtship. J Comp Neurol 448(2):150–164

    Article  CAS  PubMed  Google Scholar 

  30. Mello CV, Vicario DS, Clayton DF (1992) Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci U S A 89(15):6818–6822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ball GF, Balthazart J (2001) Ethological concepts revisited: immediate early gene induction in response to sexual stimuli in birds. Brain Behav Evol 57(5):252–270

    Article  CAS  PubMed  Google Scholar 

  32. Can A, Domjan M, Delville Y (2007) Sexual experience modulates neuronal activity in male Japanese quail. Horm Behav 52(5):590–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sadananda M, Bischof HJ (2004) c-fos is induced in the hippocampus during consolidation of sexual imprinting in the zebra finch (Taeniopygia guttata). Hippocampus 14(1):19–27

    Article  CAS  PubMed  Google Scholar 

  34. Lieshoff C, Grosse-Ophoff J, Bischof HJ (2004) Sexual imprinting leads to lateralized and non-lateralized expression of the immediate early gene zenk in the zebra finch brain. Behav Brain Res 148(1–2):145–155

    Article  CAS  PubMed  Google Scholar 

  35. Patton TB, Husband SA, Shimizu T (2009) Female stimuli trigger gene expression in male pigeons. Soc Neurosci 4(1):28–39

    Article  PubMed  Google Scholar 

  36. Shimizu T et al (2004) What does a pigeon (Columba livia) brain look like during homing? Selective examination of ZENK expression. Behav Neurosci 118(4):845–851

    Article  CAS  PubMed  Google Scholar 

  37. Avey MT, Phillmore LS, MacDougall-Shackleton SA (2005) Immediate early gene expression following exposure to acoustic and visual components of courtship in zebra finches. Behav Brain Res 165(2):247–253

    Article  CAS  PubMed  Google Scholar 

  38. George I, Hara E, Hessler NA (2006) Behavioral and neural lateralization of vision in courtship singing of the zebra finch. J Neurobiol 66(10):1164–1173

    Article  PubMed  Google Scholar 

  39. Moorman S et al (2012) Human-like brain hemispheric dominance in birdsong learning. Proc Natl Acad Sci U S A 109(31):12782–12787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moorman S et al (2015) Learning-related brain hemispheric dominance in sleeping songbirds. Sci Rep 5

    Google Scholar 

  41. Shimizu T, Karten HJ (1993) The avian visual system and the evolution of the neocortex. In: Zeigler HP, Bischof H-J (eds) Vision, brain, and behavior in birds. MIT Press, Cambridge, MA, pp 103–114

    Google Scholar 

  42. Shimizu T & Karten HJ (1991) Central visual pathways in reptiles and birds: evolution of the visual system. In: J Cronly-Dillon & R Gregory (Eds) Vision and visual dysfunction: Vol. 2. Evolution of the eye and visual system. McMillan Press, London pp 421–441

    Google Scholar 

  43. Keysers C, Diekamp B, Gunturkun O (2000) Evidence for physiological asymmetries in the intertectal connections of the pigeon (Columba livia) and their potential role in brain lateralisation. Brain Res 852(2):406–413

    Article  CAS  PubMed  Google Scholar 

  44. Weidner C et al (1985) An anatomical study of ipsilateral retinal projections in the quail using radioautographic, horseradish peroxidase, fluorescence and degeneration techniques. Brain Res 340(1):99–108

    Article  CAS  PubMed  Google Scholar 

  45. Saleh CN, Ehrlich D (1984) Composition of the supraoptic decussation of the chick (Gallus gallus). A possible factor limiting interhemispheric transfer of visual information. Cell Tissue Res 236(3):601–609

    Article  CAS  PubMed  Google Scholar 

  46. Rasband WS. ImageJ. 1997–2016 [cited 2016 6/12/2016]. Available from: http://imagej.nih.gov/ij/

  47. Seidman J (2012) In situ hybridization and immunohistochemistry. Current protocols in molecular biology. 98:14.0:14.0.1–14.0.3.

    Google Scholar 

  48. Mello CV, Clayton DF (1994) Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system. J Neurosci 14(11):6652–6666

    CAS  PubMed  Google Scholar 

  49. Mello CV, Ribeiro S (1998) ZENK protein regulation by song in the brain of songbirds. J Comp Neurol 393(4):426–438

    Article  CAS  PubMed  Google Scholar 

  50. Coons AH, Creech HJ, Jones RN (1941) Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol Med 47(2):200–202

    Article  CAS  Google Scholar 

  51. Coons AH, Kaplan MH (1950) Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91(1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karten HJ et al (1967) A stereotaxic atlas of the brain of the pigeon (Columba livia). John Hopkins University Press, Baltimore, MD, pp 1–193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadd B. Patton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Patton, T.B., Uysal, A.K., Kellogg, S.L., Shimizu, T. (2017). Brain Mapping Using the Immediate Early Gene Zenk . In: Rogers, L., Vallortigara, G. (eds) Lateralized Brain Functions. Neuromethods, vol 122. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6725-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6725-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6723-0

  • Online ISBN: 978-1-4939-6725-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics