Skip to main content

Modeling and Analysis of Cost Data

  • Living reference work entry
  • First Online:
Methods in Health Services Research

Part of the book series: Health Services Research ((HEALTHSR))

  • 188 Accesses

Abstract

Cost has become an important outcome in health services research. It can be used not only as a measure for health care spending but also as a measure for a part of health care value. Given ever-increasing rising health care expenditure, the value of health care should include not only traditional measures, such as mortality and morbidity, but also the cost of health care. Due to a limited resource, a new treatment with a slightly better efficacy but much higher cost than an existing treatment may not be a choice of a treatment for a patient. Hence, it is important to be able to approximately analyze cost data. However, appropriately analyzing health care costs may be hindered by special distribution features of cost data, including skewness, zero values, clusters, heteroscedasticity, and multimodality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ai C, Norton EC. Standard errors for the retransformation problem with heteroscedasticity. J Health Econ. 2000;19(5):697–718.

    Article  CAS  PubMed  Google Scholar 

  • Aitchison J. On the distribution of a positive random variable having a discrete probability mass at the origin. J Am Stat Assoc. 1955;50(271):901–8.

    Google Scholar 

  • Blough DK, Madden CW, Hornbrook MC. Modeling risk using generalized linear models. J Health Econ. 1999;18(2):153–71.

    Article  CAS  PubMed  Google Scholar 

  • Box GEP. Science and statistics. J Am Stat Assoc. 1976;71(356):791–9.

    Article  Google Scholar 

  • Briggs A, Nixon R, Dixon S, Thompson S. Parametric modelling of cost data: some simulation evidence. Health Econ. 2005;14(4):421–8.

    Article  PubMed  Google Scholar 

  • Callahan CM, Kesterson JG, Tierney WM, et al. Association of symptoms of depression with diagnostic test charges among older adults. Ann Intern Med. 1997;126(6):426.

    Article  CAS  PubMed  Google Scholar 

  • Yea-Hung Chen and Xiao-Hua Zhou. Interval estimates for the ratio and difference of two lognormal means. Stat Med, 25(23):4099–4113, 2006. ISSN 1097-0258. https://doi.org/10.1002/sim.2504. .

    Article  PubMed  Google Scholar 

  • Dominici F, Cope L, Naiman DQ, Zeger SL. Smooth quantile ratio estimation. Biometrika. 2005;92(3):543–57.

    Article  Google Scholar 

  • Duan N. Smearing estimate: a nonparametric retransformation method. J Am Stat Assoc. 1983;78(383):605–10. ISSN 01621459. URL http://www.jstor.org/stable/2288126

    Article  Google Scholar 

  • Efron B. Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika. 1981;68(3):589–99.

    Article  Google Scholar 

  • Fisher RA. The fiducial argument in statistical inference. Ann Hum Genet. 1935;6(4):391–8.

    Google Scholar 

  • Friedman J, Hastie T, Tibshirani R. The elements of statistical learning, volume 1. Springer Series in Statistics. 2001.

    Google Scholar 

  • Gupta RC, Li X. Statistical inference for the common mean of two log-normal distributions and some applications in reliability. Comput stat data anal. 2006;50(11):3141–64.

    Article  Google Scholar 

  • Hall P. On the removal of skewness by transformation. J R Stat Soc Ser B Methodol. 1992;54(1):221–8.

    Google Scholar 

  • Hannig J, Iyer H, Patterson P. Fiducial generalized confidence intervals. J Am Stat Assoc. 2006;101(473):254–69. https://doi.org/10.1198/016214505000000736.

    Article  CAS  Google Scholar 

  • Hayashi F. Econometrics, vol. volume 1. Princeton: Princeton University Press; 2000.

    Google Scholar 

  • Koenker R. Quantreg: quantile regression. R package version, 4. 2009.

    Google Scholar 

  • Koenker R, Hallock KF. Quantile regression. J Econ Perspect. 2001;15(4):143–56.

    Article  Google Scholar 

  • Krishnamoorthy K, Mathew T. Inferences on the means of lognormal distributions using generalized p-values and generalized confidence intervals. J stat plann infer. 2003;115(1):103–21.

    Article  Google Scholar 

  • Land CE. An evaluation of approximate confidence interval estimation methods for lognormal means. Technometrics. 1972;14(1):145–58.

    Article  Google Scholar 

  • Manning WG, Mullahy J. Estimating log models: to transform or not to transform? J Health Econ. 2001;20(4):461–94.

    Article  CAS  PubMed  Google Scholar 

  • Manning WG, Basu A, Mullahy J. Generalized modeling approaches to risk adjustment of skewed outcomes data. J Health Econ. 2005;24(3):465–88.

    Article  PubMed  Google Scholar 

  • Manning WG. The logged dependent variable, heteroscedasticity, and the retransfor-mation problem. J Health Econ. 1998;17(3):283–95. ISSN 0167-6296. URL http://ukpmc.ac.uk/abstract/MED/10180919

    Article  CAS  PubMed  Google Scholar 

  • McCullagh P, Nelder JA. Generalized linear models. Boca Raton: Chapman & Hall/CRC; 1989.

    Book  Google Scholar 

  • McLachlan GJ, Peel D. Finite mixture models, vol. volume 299. Hoboken: Wiley-Interscience; 2000.

    Book  Google Scholar 

  • Owen WJ, DeRouen TA. Estimation of the mean for lognormal data containing zeroes and left-censored values, with applications to the measurement of worker exposure to air contaminants. Biometrics. 1980;36(4):707–19. ISSN 0006341X. URL http://www.jstor.org/stable/2556125

    Article  Google Scholar 

  • Seber GAF, Lee AJ. Linear regression analysis, vol. volume 936. Hoboken: Wiley; 2012.

    Google Scholar 

  • Tian L, Wu J. Confidence intervals for the mean of lognormal data with excess zeros. Biom J. 2006;48(1):149–56.

    Article  PubMed  Google Scholar 

  • Lili Tian. Inferences on the mean of zero-inflated lognormal data: the generalized variable approach. Stat Med, 24(20):3223–3232, 2005. ISSN 1097-0258. https://doi.org/10.1002/sim.2169.

    Article  PubMed  Google Scholar 

  • Tsui K-W, Weerahandi S. Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. J Am Stat Assoc. 1989;84(406):602–7. ISSN 01621459. URL http://www.jstor.org/stable/2289949

    Google Scholar 

  • Weerahandi S. Generalized confidence intervals. J Am Stat Assoc. 1993;88(423):899–905. ISSN 01621459. URL http://www.jstor.org/stable/2290779

    Article  Google Scholar 

  • Weisberg S. Applied linear regression, volume 528. Wiley; 2005.

    Book  Google Scholar 

  • Welsh AH, Zhou XH. Estimating the retransformed mean in a heteroscedastic two-part model. J stat plann infer. 2006;136(3):860–81.

    Article  Google Scholar 

  • Wu J, Wong ACM, Jiang G. Likelihood-based confidence intervals for a log-normal mean. Stat Med. 2003;22(11):1849–60.

    Article  PubMed  Google Scholar 

  • Zhou XH. Estimation of the log-normal mean. Stat Med. 1998;17(19):2251–64.

    Article  CAS  PubMed  Google Scholar 

  • Zhou XH, Gao S. Confidence intervals for the log-normal mean. Stat Med. 1997;16(7):783–90.

    Article  CAS  PubMed  Google Scholar 

  • Zhou XH, Gao S. One-sided confidence intervals for means of positively skewed distributions. Am Stat. 2000:100–4.

    Google Scholar 

  • Zhou XH, Tu W. Comparison of several independent population means when their samples contain log-normal and possibly zero observations. Biometrics. 1999;55(2):645–51.

    Article  Google Scholar 

  • Zhou XH, Tu W. Confidence intervals for the mean of diagnostic test charge data containing zeros. Biometrics. 2000;56(4):1118–25.

    Article  CAS  PubMed  Google Scholar 

  • Zhou XH, Lin H, Johnson E. Non-parametric heteroscedastic transformation regression models for skewed data with an application to health care costs. J R Stat Soc Ser B Stat Methodol. 2008;70(5):1029–47.

    Article  Google Scholar 

  • Zhou X-H, Gao S, Hui SL. Methods for comparing the means of two independent log-normal samples. Biometrics. 1997;53(3):1129–35. ISSN 0006341X. URL http://www.jstor.org/stable/2533570

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XH Andrew Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Chen, S., Zhou, X.A. (2017). Modeling and Analysis of Cost Data. In: Sobolev, B., Gatsonis, C. (eds) Methods in Health Services Research. Health Services Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6704-9_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6704-9_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6704-9

  • Online ISBN: 978-1-4939-6704-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics