Skip to main content

DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms

  • Protocol
  • First Online:
Metagenomics

Abstract

Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13C, 18O, or 15N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labeled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labeled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing of clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labeling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, metagenomes, or metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labeled microorganisms. Analysis of labeled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allow the use of labeled substrates at ecologically relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies, leading to further breakthroughs in our understanding of novel microbial populations and elucidation of the metabolic function of complex microbial communities. In this chapter we provide protocols for obtaining labeled DNA, RNA, and proteins that can be used for downstream omics-based analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lynch MD, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229

    Article  CAS  PubMed  Google Scholar 

  3. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S et al (2007) The sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77

    Article  PubMed  PubMed Central  Google Scholar 

  4. Quince C, Curtis TP, Sloan WT (2008) The rational exploration of microbial diversity. ISME J 2:997–1006

    Article  CAS  PubMed  Google Scholar 

  5. Shade A, Hogan CS, Klimowicz AK, Linske M, McManus PS, Handelsman J (2012) Culturing captures members of the soil rare biosphere. Environ Microbiol 14:2247–2252

    Article  PubMed  PubMed Central  Google Scholar 

  6. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  CAS  PubMed  Google Scholar 

  7. Dumont MG, Murrell JC (2005) Stable isotope probing - linking microbial identity to function. Nat Rev Microbiol 3:499–504

    Article  CAS  PubMed  Google Scholar 

  8. Neufeld JD, Wagner M, Murrell JC (2007) Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J 1:103–110

    Article  CAS  PubMed  Google Scholar 

  9. Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31:154–165

    Article  CAS  PubMed  Google Scholar 

  10. Grob C, Taubert M, Howat AM, Burns OJ, Chen Y, Murrell JC (2015) Generating enriched metagenomes from active microorganisms with DNA stable isotope probing. Hydrocarb Lipid Microbiol Protoc 10:1007

    Google Scholar 

  11. Friedrich MW (2006) Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Curr Opin Biotechnol 17:59–66

    Article  CAS  PubMed  Google Scholar 

  12. Neufeld JD, Dumont MG, Vohra J, Murrell JC (2007) Methodological considerations for the use of stable isotope probing in microbial ecology. Microb Ecol 53:435–442

    Article  CAS  PubMed  Google Scholar 

  13. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  CAS  PubMed  Google Scholar 

  14. Wellington EM, Berry A, Krsek M (2003) Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol 6:295–301

    Article  CAS  PubMed  Google Scholar 

  15. Martineau C, Whyte LG, Greer CW (2010) Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic. Appl Environ Microbiol 76:5773–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bell TH, Yergeau E, Martineau C, Juck D, Whyte LG, Greer CW (2011) Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N]DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77:4163–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eyice Ö, Namura M, Chen Y, Mead A, Samavedam S, Schäfer H (2015) SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME J 9:2336–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grob C, Taubert M, Howat AM, Burns OJ, Dixon JL, Richnow HH et al (2015) Combining metagenomics with metaproteomics and stable isotope probing reveals metabolic pathways used by a naturally occurring marine methylotroph. Environ Microbiol 17:4007–4018

    Article  CAS  PubMed  Google Scholar 

  19. Dumont MG, Radajewski SM, Miguez CB, McDonald IR, Murrell JC (2006) Identification of a complete methane monooxygenase operon from soil by combining stable isotope probing and metagenomic analysis. Environ Microbiol 8:1240–1250

    Article  CAS  PubMed  Google Scholar 

  20. Coyotzi S, Pratscher J, Murrell JC, Neufeld JD (2016) Targeted metagenomics of active microbial populations with stable-isotope probing. Curr Opin Biotechnol 41:1–8

    Article  CAS  PubMed  Google Scholar 

  21. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31:533–538

    Article  CAS  PubMed  Google Scholar 

  22. Dumont MG, Pommerenke B, Casper P, Conrad R (2011) DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ Microbiol 13:1153–1167

    Article  CAS  PubMed  Google Scholar 

  23. Haichar FZ, Roncato MA, Achouak W (2012) Stable isotope probing of bacterial community structure and gene expression in the rhizosphere of Arabidopsis thaliana. FEMS Microbiol Ecol 81:291–302

    Article  PubMed  Google Scholar 

  24. Huang WE, Ferguson A, Singer AC, Lawson K, Thompson IP, Kalin RM et al (2009) Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell raman-fluorescence in situ hybridization. Appl Environ Microbiol 75:234–241

    Article  CAS  PubMed  Google Scholar 

  25. Dumont MG, Pommerenke B, Casper P (2013) Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Rep 5:757–764

    CAS  PubMed  Google Scholar 

  26. Jehmlich N, Schmidt F, Taubert M, Seifert J, Bastida F, von Bergen M et al (2010) Protein-based stable isotope probing. Nat Protoc 5:1957–1966

    Article  CAS  PubMed  Google Scholar 

  27. Seifert J, Taubert M, Jehmlich N, Schmidt F, Volker U, Vogt C et al (2012) Protein-based stable isotope probing (protein-SIP) in functional metaproteomics. Mass Spectrom Rev 31:683–697

    Article  CAS  PubMed  Google Scholar 

  28. von Bergen M, Jehmlich N, Taubert M, Vogt C, Bastida F, Herbst FA et al (2013) Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. ISME J 7:1877–1885

    Article  Google Scholar 

  29. Pan C, Fischer CR, Hyatt D, Bowen BP, Hettich RL, Banfield JF (2011) Quantitative tracking of isotope flows in proteomes of microbial communities. Mol Cell Proteomics 10(M110):006049

    PubMed  Google Scholar 

  30. Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H et al (2012) Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J 6:2291–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lünsmann V, Kappelmeyer U, Benndorf R, Martinez-Lavanchy PM, Taubert A, Adrian L et al (2016) In situ protein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model. Environ Microbiol 18:1176

    Article  PubMed  Google Scholar 

  32. Herbst FA, Bahr A, Duarte M, Pieper DH, Richnow HH, von Bergen M et al (2013) Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein-SIP). Proteomics 13:2910–2920

    CAS  PubMed  Google Scholar 

  33. Taubert M, Baumann S, von Bergen M, Seifert J (2011) Exploring the limits of robust detection of incorporation of 13C by mass spectrometry in protein-based stable isotope probing (protein-SIP). Anal Bioanal Chem 401:1975–1982

    Article  CAS  PubMed  Google Scholar 

  34. Taubert M, von Bergen M, Seifert J (2013) Limitations in detection of 15N incorporation by mass spectrometry in protein-based stable isotope probing (protein-SIP). Anal Bioanal Chem 405:3989–3996

    Article  CAS  PubMed  Google Scholar 

  35. Jehmlich N, Kopinke FD, Lenhard S, Vogt C, Herbst FA, Seifert J et al (2012) Sulfur-36S stable isotope labeling of amino acids for quantification (SULAQ). Proteomics 12:37–42

    Article  CAS  PubMed  Google Scholar 

  36. Justice NB, Li Z, Wang Y, Spaudling SE, Mosier AC, Hettich RL et al (2014) 15N- and 2H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity. Environ Microbiol 16:3224–3237

    Article  CAS  PubMed  Google Scholar 

  37. Slysz GW, Steinke L, Ward DM, Klatt CG, Clauss TR, Purvine SO et al (2014) Automated data extraction from in situ protein-stable isotope probing studies. J Proteome Res 13:1200–1210

    Article  CAS  PubMed  Google Scholar 

  38. Sachsenberg T, Herbst FA, Taubert M, Kermer R, Jehmlich N, von Bergen M et al (2015) MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteome Res 14:619–627

    Article  CAS  PubMed  Google Scholar 

  39. Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, Murrell JC (2007) DNA stable-isotope probing. Nat Protoc 2:860–866

    Article  CAS  PubMed  Google Scholar 

  40. Whiteley AS, Thomson B, Lueders T, Manefield M (2007) RNA stable-isotope probing. Nat Protoc 2:838–844

    Article  CAS  PubMed  Google Scholar 

  41. Bartram AK, Lynch MD, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. Appl Environ Microbiol 77:3846–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jünemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J et al (2013) Updating benchtop sequencing performance comparison. Nat Biotechnol 31:294–296

    Article  PubMed  Google Scholar 

  44. Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46

    Article  PubMed  PubMed Central  Google Scholar 

  45. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Menzel P, Ng KL, and Krogh A (2015) Kaiju: fast and sensitive taxonomic classification for metagenomics. bioRxiv. doi: 10.1101/031229.

  47. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M et al (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bartram A, Poon C, Neufeld J (2009) Nucleic acid contamination of glycogen used in nucleic acid precipitation and assessment of linear polyacrylamide as an alternative co-precipitant. Biotechniques 47:1019–1022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Yin Chen acknowledges funding from NERC grant NE/I027061/1, and Yin Chen and J. Colin Murrell both acknowledge funding from the Gordon and Betty Moore Foundation Marine Microbiology Initiative Grant GBMF3303 and the Earth and Life Systems Alliance, Norwich Research Park, Norwich, UK. Josh D. Neufeld acknowledges a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Dumont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Jameson, E. et al. (2017). DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms. In: Streit, W., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 1539. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6691-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6691-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6689-9

  • Online ISBN: 978-1-4939-6691-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics