Skip to main content

Respiratory System Responses to Exercise in Spinal Cord Injury

  • Chapter
  • First Online:
The Physiology of Exercise in Spinal Cord Injury

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

In the previous half-century, outcomes for people with spinal cord injury (SCI) have dramatically improved. Nevertheless, respiratory complications are still frequently observed, especially in those with cervical SCI. In this chapter, we synthesize current knowledge regarding the changes in pulmonary and respiratory muscle function that occur after SCI, and emphasise the respiratory responses to exercise. We do not provide extensive background on respiratory function in the acute period post-SCI or discuss clinical pulmonary complications such as cough and sleep disordered breathing. Data are presented for both trained and untrained individuals with SCI and, when available, by level of injury. However, since the majority of respiratory complications are present only in those with cervical and high-thoracic SCI, most studies are delimited to these levels of injury. Finally, despite the well-appreciated sex-based differences in respiratory function that exist in able-bodied individuals, no studies have stratified respiratory outcomes by sex; this is likely due to the fivefold higher incidence of SCI in men vs. women. Thus, the focus of this chapter is on the respiratory responses to SCI at rest and during exercise in men with high-level SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alison JA, Regnis JA, Donnelly PM et al (1998) End-expiratory lung volume during arm and leg exercise in normal subjects and patients with cystic fibrosis. Am J Respir Crit Care Med 158:1450–1458

    Article  CAS  PubMed  Google Scholar 

  • Aliverti A, Bovio D, Fullin I et al (2009) The abdominal circulatory pump. PLoS One 4:e5550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aliverti A, Uva B, Laviola M et al (2010) Concomitant ventilatory and circulatory functions of the diaphragm and abdominal muscles. J Appl Physiol 109:1432–1440

    Article  PubMed  Google Scholar 

  • Almenoff PL, Alexander LR, Spungen AM et al (1995) Bronchodilatory effects of ipratropium bromide in patients with tetraplegia. Paraplegia 33:274–277

    Article  CAS  PubMed  Google Scholar 

  • Anke A, Aksnes AK, Stanghelle JK et al (1993) Lung volumes in tetraplegic patients according to cervical spinal cord injury level. Scand J Rehabil Med 25:73–77

    CAS  PubMed  Google Scholar 

  • Babb TG (2013) Exercise ventilatory limitation: the role of expiratory flow limitation. Exerc Sport Sci Rev 41:11–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Barstow TJ, Scremin AM, Mutton DL et al (1996) Changes in gas exchange kinetics with training in patients with spinal cord injury. Med Sci Sports Exerc 28:1221–1228

    Article  CAS  PubMed  Google Scholar 

  • Baydur A, Adkins RH, Milic-Emili J (2001) Lung mechanics in individuals with spinal cord injury: effects of injury level and posture. J Appl Physiol 90:405–411

    CAS  PubMed  Google Scholar 

  • Boaventura CM, Gastaldi AC, Silveira JM et al (2003) Effect of an abdominal binder on the efficacy of respiratory muscles in seated and supine tetraplegic patients. Physiotherapy 89:290–295

    Article  Google Scholar 

  • Bodin P, Fagevik Olsen M, Bake B et al (2005) Effects of abdominal binding on breathing patterns during breathing exercises in persons with tetraplegia. Spinal Cord 43:117–122

    Article  CAS  PubMed  Google Scholar 

  • Bougenot MP, Tordi N, Betik AC et al (2003) Effects of a wheelchair ergometer training programme on spinal cord-injured persons. Spinal Cord 41:451–456

    Article  PubMed  Google Scholar 

  • Brown R, DiMarco AF, Hoit JD et al (2006) Respiratory dysfunction and management in spinal cord injury. Respir Care 51:853–868

    PubMed  PubMed Central  Google Scholar 

  • Crane L, Klerk K, Ruhl A et al (1994) The effect of exercise training on pulmonary function in persons with quadriplegia. Paraplegia 32:435–441

    Article  CAS  PubMed  Google Scholar 

  • de Groot PC, van Dijk A, Dijk E et al (2006) Preserved cardiac function after chronic spinal cord injury. Arch Phys Med Rehab 87:1195–1200

    Article  Google Scholar 

  • De Troyer A, Wilson TA (2009) Effect of acute inflation on the mechanics of the inspiratory muscles. J Appl Physiol 107:315–323

    Article  PubMed  Google Scholar 

  • De Troyer A, Wilson TA (2015) Mechanism of the increased rib cage expansion produced by the diaphragm with abdominal support. J Appl Physiol 118:989–995

    Article  PubMed  Google Scholar 

  • De Troyer A, Estenne M, Vincken W (1986a) Rib cage motion and muscle use in high tetraplegics. Am Rev Respir Dis 133:1115–1119

    CAS  PubMed  Google Scholar 

  • De Troyer A, Estenne M, Heilporn A (1986b) Mechanism of active expiration in tetraplegic subjects. NEJM 314:740–744

    Article  CAS  PubMed  Google Scholar 

  • Deley G, Denuziller J, Babault N (2015) Functional electrical stimulation: cardiorespiratory adaptations and applications for training in paraplegia. Sports Med 45:71–82

    Article  PubMed  Google Scholar 

  • DeLuca RV, Grimm DR, Lesser M et al (1999) Effects of a beta2-agonist on airway hyperreactivity in subjects with cervical spinal cord injury. Chest 115:1533–1538

    Article  CAS  PubMed  Google Scholar 

  • Dicpinigaitis PV, Spungen AM, Bauman WA et al (1994) Bronchial hyperresponsiveness after cervical spinal cord injury. Chest 105:1073–1076

    Article  CAS  PubMed  Google Scholar 

  • Eldridge FL, Millhorn DE, Waldrop TG (1981) Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science 211:844–846

    Article  CAS  PubMed  Google Scholar 

  • Eldridge FL, Millhorn DE, Kiley JP et al (1985) Stimulation by central command of locomotion, respiration and circulation during exercise. Respir Physiol 59:313–337

    Article  CAS  PubMed  Google Scholar 

  • Estenne M, De Troyer A (1986) The effects of tetraplegia on chest wall statics. Am Rev Respir Dis 134:121–124

    CAS  PubMed  Google Scholar 

  • Estenne M, Knoop C, Vanvaerenbergh J et al (1989) The effect of pectoralis muscle training in tetraplegic subjects. Am Rev Respir Dis 139:1218–1222

    Article  CAS  PubMed  Google Scholar 

  • Estenne M, Gevenois PA, Kinnear W et al (1993) Lung volume restriction in patients with chronic respiratory muscle weakness: the role of microatelectasis. Thorax 48:698–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estenne M, Van Muylem A, Gorini M et al (1998) Effects of abdominal strapping on forced expiration in tetraplegic patients. Am J Respir Crit Care Med 157:95–98

    Article  CAS  PubMed  Google Scholar 

  • Faghri PD, Glaser RM, Figoni SF (1992) Functional electrical stimulation leg cycle ergometer exercise: training effects on cardiorespiratory responses of spinal cord injured subjects at rest and during submaximal exercise. Arch Phys Med Rehabil 73:1085–1093

    CAS  PubMed  Google Scholar 

  • Fein ED, Grimm DR, Lesser M et al (1998) The effects of ipratropium bromide on histamine-induced bronchoconstriction in subjects with cervical spinal cord injury. J Asthma 35:49–55

    Article  CAS  PubMed  Google Scholar 

  • Forster HV, Haouzi P, Dempsey JA (2012) Control of breathing during exercise. Comp Physiol 2:743–777

    Google Scholar 

  • Fugl-Meyer AR, Grimby G (1971a) Rib-cage and abdominal volume ventilation partitioning in tetraplegic patients. Scand J Rehabil Med 3:161–167

    CAS  PubMed  Google Scholar 

  • Fugl-Meyer AR, Grimby G (1971b) Ventilatory function in tetraplegic patients. Scand J Rehabil Med 3:151–160

    CAS  PubMed  Google Scholar 

  • Fujiwara T, Hara Y, Chino N (1999) Expiratory function in complete tetraplegics—Study of spirometry, maximal expiratory pressure, and muscle activity of pectoralis major and latissimus dorsi muscles. Am J Phys Med Rehabil 78:464–469

    Article  CAS  PubMed  Google Scholar 

  • Gass GC, Watson J, Camp EM et al (1980) The effects of physical training on high level spinal lesion patients. Scand J Rehabil Med 12:61–65

    CAS  PubMed  Google Scholar 

  • Gigliotti F, Coli C, Bianchi R et al (2005) Arm exercise and hyperinflation in patients with COPD: effect of arm training. Chest 128:1225–1232

    Article  PubMed  Google Scholar 

  • Goldman JM, Rose LS, Morgan MD et al (1986a) Measurement of abdominal wall compliance in normal subjects and tetraplegic patients. Thorax 41:513–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman JM, Rose LS, Williams SJ et al (1986b) Effect of abdominal binders on breathing in tetraplegic patients. Thorax 41:940–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman JM, Williams SJ, Denison DM (1988) The rib cage and abdominal components of respiratory system compliance in tetraplegic patients. Eur Respir J 1:242–247

    CAS  PubMed  Google Scholar 

  • Goosey-Tolfrey V, Foden E, Perret C et al (2010) Effects of inspiratory muscle training on respiratory function and repetitive sprint performance in wheelchair basketball players. Br J Sports Med 44:665–668

    Article  CAS  PubMed  Google Scholar 

  • Grigorean VT, Sandu AM, Popescu M et al (2009) Cardiac dysfunctions following spinal cord injury. J Med Life 2:133–145

    PubMed  PubMed Central  Google Scholar 

  • Grimm DR, Arias E, Lesser M et al (1999) Airway hyperresponsiveness to ultrasonically nebulized distilled water in subjects with tetraplegia. J Appl Physiol 86:1165–1169

    CAS  PubMed  Google Scholar 

  • Gross D, Ladd HW, Riley EJ et al (1980) The effect of training on strength and endurance of the diaphragm in quadriplegia. Am J Med 68:27–35

    Article  CAS  PubMed  Google Scholar 

  • Guttman L (1973) Spinal cord injuries: comprehensive management and research, vol 1. Blackwell Scientific, Oxford

    Google Scholar 

  • HajGhanbari B, Yamabayashi C, Buna TR et al (2013) Effects of respiratory muscle training on performance in athletes: a systematic review with meta-analyses. J Strength Cond Res 27:1643–1663

    Article  PubMed  Google Scholar 

  • Hart N, Laffont I, de la Sota AP et al (2005) Respiratory effects of combined truncal and abdominal support in patients with spinal cord injury. Arch Phys Med Rehabil 86:1447–1451

    Article  PubMed  Google Scholar 

  • Hooker SP, Figoni SF, Rodgers MM et al (1992) Metabolic and hemodynamic responses to concurrent voluntary arm crank and electrical stimulation leg cycle exercise in quadriplegics. J Rehabil Res Dev 29:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hooker SP, Scremin AM, Mutton DL et al (1995) Peak and submaximal physiologic responses following electrical stimulation leg cycle ergometer training. J Rehabil Res Dev 32:361–366

    CAS  PubMed  Google Scholar 

  • Hopman MT, Oeseburg B, Binkhorst RA (1992) The effect of an anti-G suit on cardiovascular responses to exercise in persons with paraplegia. Med Sci Sports Exerc 24:984–990

    Article  CAS  PubMed  Google Scholar 

  • Hopman MT, Kamerbeek IC, Pistorius M et al (1993) The effect of an anti-G suit on the maximal performance of individuals with paraplegia. Int J Sports Med 14:357–361

    Article  CAS  PubMed  Google Scholar 

  • Hopman MT, Houtman S, Groothuis JT et al (2004) The effect of varied fractional inspired oxygen on arm exercise performance in spinal cord injury and able-bodied persons. Arch Phys Med Rehab 85:319–323

    Article  Google Scholar 

  • Huldtgren AC, Fugl-Meyer AR, Jonasson E et al (1980) Ventilatory dysfunction and respiratory rehabilitation in post-traumatic quadriplegia. Eur J Respir Dis 61:347–356

    CAS  PubMed  Google Scholar 

  • Illi SK, Held U, Frank I et al (2012) Effect of respiratory muscle training on exercise performance in healthy individuals: a systematic review and meta-analysis. Sports Med 42:707–724

    Article  PubMed  Google Scholar 

  • Johnson BD, Beck KC, Zeballos RJ et al (1999) Advances in pulmonary laboratory testing. Chest 116:1377–1387

    Article  CAS  PubMed  Google Scholar 

  • Kaufman M, Forster HV (1996) Reflexes controlling circulatory, ventilatory and airway responses to exercise. In: Handbook of physiology, Section 12, Exercise: regulation and integration of multiple systems. Oxford University Press for the American Physiological Society, New York

    Google Scholar 

  • Kemi OJ, Haram PM, Loennechen JP et al (2005) Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res 67:161–172

    Article  CAS  PubMed  Google Scholar 

  • Kerk JK, Clifford PS, Snyder AC et al (1995) Effect of an abdominal binder during wheelchair exercise. Med Sci Sports Exerc 27:913–919

    Article  CAS  PubMed  Google Scholar 

  • Krassioukov A (2009) Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol 169:157–164

    Article  PubMed  Google Scholar 

  • Krassioukov A, West C (2014) The role of autonomic function on sport performance in athletes with spinal cord injury. PM R 6:S58–S65

    Article  PubMed  Google Scholar 

  • Kyhl K, Drvis I, Barak O et al (2016) Organ perfusion during voluntary pulmonary hyperinflation; a magnetic resonance imaging study. Am J Physiol Heart Circ Physiol 310:H444–H451

    Article  PubMed  Google Scholar 

  • Le Foll-de Moro D, Tordi N, Lonsdorfer E et al (2005) Ventilation efficiency and pulmonary function after a wheelchair interval-training program in subjects with recent spinal cord injury. Arch Phys Med Rehab 86:1582–1586

    Article  Google Scholar 

  • Leicht CA, Griggs KE, Lavin J et al (2014) Blood lactate and ventilatory thresholds in wheelchair athletes with tetraplegia and paraplegia. Eur J Appl Physiol 114:1635–1643

    Article  CAS  PubMed  Google Scholar 

  • Lin HT, Su FC, Wu HW et al (2004) Muscle forces analysis in the shoulder mechanism during wheelchair propulsion. Proc Inst Mech Eng H 218:213–221

    Article  PubMed  Google Scholar 

  • Lin F, Parthasarathy S, Taylor SJ et al (2006) Effect of different sitting postures on lung capacity, expiratory flow, and lumbar lordosis. Arch Phys Med Rehabil 87:504–509

    Article  PubMed  Google Scholar 

  • Linn WS, Spungen AM, Gong H et al (2001) Forced vital capacity in two large outpatient populations with chronic spinal cord injury. Spinal Cord 39:263–268

    Article  CAS  PubMed  Google Scholar 

  • Litchke LG, Russian CJ, Lloyd LK et al (2008) Effects of respiratory resistance training with a concurrent flow device on wheelchair athletes. J Spinal Cord Med 31:65–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Loftin M, Boileau RA, Massey BH et al (1988) Effect of arm training on central and peripheral circulatory function. Med Sci Sports Exerc 20:136–141

    Article  CAS  PubMed  Google Scholar 

  • Marini JJ, Culver BH, Butler J (1981) Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis 124:382–386

    CAS  PubMed  Google Scholar 

  • Mateus SR, Beraldo PS, Horan TA (2006) Cholinergic bronchomotor tone and airway caliber in tetraplegic patients. Spinal Cord 44:269–274

    Article  CAS  PubMed  Google Scholar 

  • Mateus SR, Beraldo PS, Horan TA (2007) Maximal static mouth respiratory pressure in spinal cord injured patients: correlation with motor level. Spinal Cord 45:569–575

    Article  CAS  PubMed  Google Scholar 

  • McConnell AK (2012) CrossTalk opposing view: respiratory muscle training does improve exercise tolerance. J Physiol 590:3397–3398; discussion 3399–3400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell AK, Romer LM (2004a) Respiratory muscle training in healthy humans: resolving the controversy. Int J Sports Med 25:284–293

    Article  CAS  PubMed  Google Scholar 

  • McConnell AK, Romer LM (2004b) Dyspnoea in health and obstructive pulmonary disease: the role of respiratory muscle function and training. Sports Med 34:117–132

    Article  PubMed  Google Scholar 

  • McCool FD, Pichurko BM, Slutsky AS et al (1986) Changes in lung volume and rib cage configuration with abdominal binding in quadriplegia. J Appl Physiol 60:1198–1202

    CAS  PubMed  Google Scholar 

  • McKenzie DK, Gandevia SC (1987) Influence of muscle length on human inspiratory and limb muscle endurance. Respir Physiol 67:171–182

    Article  CAS  PubMed  Google Scholar 

  • McParland C, Krishnan B, Lobo J et al (1992) Effect of physical training on breathing pattern during progressive exercise. Respir Physiol 90:311–323

    Article  CAS  PubMed  Google Scholar 

  • Mead J, Banzett RB, Lehr J et al (1984) Effect of posture on upper and lower rib cage motion and tidal volume during diaphragm pacing. Am Rev Respir Dis 130:320–321

    CAS  PubMed  Google Scholar 

  • Miller JD, Pegelow DF, Jacques AJ et al (2005a) Skeletal muscle pump versus respiratory muscle pump: modulation of venous return from the locomotor limb in humans. J Physiol 563:925–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JD, Pegelow DF, Jacques AJ et al (2005b) Effects of augmented respiratory muscle pressure production on locomotor limb venous return during calf contraction exercise. J Appl Physiol 99:1802–1815

    Article  PubMed  Google Scholar 

  • Mortola JP, Sant’Ambrogio G (1978) Motion of the rib cage and the abdomen in tetraplegic patients. Clin Sci Mol Med 54:25–32

    CAS  PubMed  Google Scholar 

  • Mueller G, de Groot S, van der Woude L et al (2008a) Time-courses of lung function and respiratory muscle pressure generating capacity after spinal cord injury: a prospective cohort study. J Rehabil Med 40:269–276

    Article  PubMed  Google Scholar 

  • Mueller G, Perret C, Hopman MT (2008b) Effects of respiratory muscle endurance training on wheelchair racing performance in athletes with paraplegia: a pilot study. Clin J Sport Med 18:85–88

    Article  PubMed  Google Scholar 

  • Patel MS, Hart N, Polkey MI (2012) CrossTalk proposal: training the respiratory muscles does not improve exercise tolerance. J Physiol 590:3393–3395; discussion 3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrino R, Viegi G, Brusasco V et al (2005) Interpretative strategies for lung function tests. Eur Respir J 26:948–968

    Article  CAS  PubMed  Google Scholar 

  • Phillips CA, Danopulos D, Kezdi P et al (1989) Muscular, respiratory and cardiovascular responses of quadriplegic persons to an F. E. S. bicycle ergometer conditioning program. Int J Rehabil Res 12:147–157

    Article  CAS  PubMed  Google Scholar 

  • Pitetti KH, Barrett PJ, Campbell KD et al (1994) The effect of lower body positive pressure on the exercise capacity of individuals with spinal cord injury. Med Sci Sports Exerc 26:463–468

    Article  CAS  PubMed  Google Scholar 

  • Qiu S, Alzhab S, Picard G et al (2016) Ventilation limits aerobic capacity after FES row training in high spinal cord injury. Med Sci Sports Exerc 48:1111–1118

    Article  PubMed  Google Scholar 

  • Radulovic M, Schilero GJ, Wecht JM et al (2008a) Airflow obstruction and reversibility in spinal cord injury: evidence for functional sympathetic innervation. Arch Phys Med Rehab 89:2349–2353

    Article  Google Scholar 

  • Radulovic M, Schilero GJ, Wecht JM et al (2008b) Airflow obstruction and reversibility in spinal cord injury: evidence for functional sympathetic innervation. Arch Phys Med and Rehab 89:2349–2353

    Article  Google Scholar 

  • Radulovic M, Schilero GJ, Wecht JM et al (2010) Exhaled nitric oxide levels are elevated in persons with tetraplegia and comparable to that in mild asthmatics. Lung 188:259–262

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen B, Klausen K, Clausen JP et al (1975) Pulmonary ventilation, blood gases, and blood pH after training of the arms or the legs. J Appl Physiol 38:250–256

    CAS  PubMed  Google Scholar 

  • Romagnoli I, Scano G, Binazzi B et al (2013) Effects of unsupported arm training on arm exercise-related perception in COPD patients. Respir Physiol Neurobiol 186:95–102

    Article  CAS  PubMed  Google Scholar 

  • Romer LM, Polkey MI (2008) Exercise-induced respiratory muscle fatigue: implications for performance. J Appl Physiol 104:879–888

    Article  PubMed  Google Scholar 

  • Romer LM, McConnell AK, Jones DA (2002) Inspiratory muscle fatigue in trained cyclists: effects of inspiratory muscle training. Med Sci Sports Exerc 34:785–792

    Article  PubMed  Google Scholar 

  • Romer LM, Tiller N, Aggar, T et al (2014) In: De Haan A, De Ruiter CJ, Tsolakidis E (eds) Exercise-induced diaphragm fatigue in an elite adaptive rower with spinal cord injury. SporTools GmbH, p 654

    Google Scholar 

  • Roth EJ, Lu A, Primack S et al (1997) Ventilatory function in cervical and high thoracic spinal cord injury. Relationship to level of injury and tone. Am J Phys Med Rehabil 76:262–267

    Article  CAS  PubMed  Google Scholar 

  • Roussos C, Fixley M, Gross D et al (1979) Fatigue of inspiratory muscles and their synergic behavior. J Appl Physiol Respir Environ Exerc Physiol 46:897–904

    CAS  PubMed  Google Scholar 

  • Rutchik A, Weissman AR, Almenoff PL et al (1998) Resistive inspiratory muscle training in subjects with chronic cervical spinal cord injury. Arch Phys Med Rehabil 79:293–297

    Article  CAS  PubMed  Google Scholar 

  • Schilero GJ, Grimm DR, Bauman WA et al (2005) Assessment of airway caliber and bronchodilator responsiveness in subjects with spinal cord injury. Chest 127:149–155

    Article  PubMed  Google Scholar 

  • Schilero GJ, Spungen AM, Bauman WA et al (2009) Pulmonary function and spinal cord injury. Respir Physiol Neurobiol 166:129–141

    Article  PubMed  Google Scholar 

  • Scichilone N, Morici G, Zangla D et al (2010) Effects of exercise training on airway responsiveness and airway cells in healthy subjects. J Appl Physiol 109:288–294

    Article  PubMed  Google Scholar 

  • Sheel AW, Romer LM (2012) Ventilation and respiratory mechanics. Compr Physiol 2:1093–1142

    PubMed  Google Scholar 

  • Sheel AW, Reid WD, Townson AF et al (2008) Effects of exercise training and inspiratory muscle training in spinal cord injury: a systematic review. J Spinal Cord Med 31:500–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherman MF, Lam T, Sheel AW (2009) Locomotor-respiratory synchronization after body weight supported treadmill training in incomplete tetraplegia: a case report. Spinal Cord 47:896–898

    Article  CAS  PubMed  Google Scholar 

  • Silva AC, Neder JA, Chiurciu MV et al (1998) Effect of aerobic training on ventilatory muscle endurance of spinal cord injured men. Spinal Cord 36:240–245

    Article  CAS  PubMed  Google Scholar 

  • Silveira JM, Gastaldi AC, Boaventura Cde M et al (2010) Inspiratory muscle training in quadriplegic patients. J Bras Pneumol 36:313–319

    Article  PubMed  Google Scholar 

  • Sinderby C, Weinberg J, Sullivan L et al (1996) Diaphragm function in patients with cervical cord injury or prior poliomyelitis infection. Spinal Cord 34:204–213

    Article  CAS  PubMed  Google Scholar 

  • Singas E, Lesser M, Spungen AM et al (1996) Airway hyperresponsiveness to methacholine in subjects with spinal cord injury. Chest 110:911–915

    Article  CAS  PubMed  Google Scholar 

  • Stepp EL, Brown R, Tun CG et al (2008) Determinants of lung volumes in chronic spinal cord injury. Arch Phys Med Rehabil 89:1499–1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Supinski GS, Fitting JW, Bellemare F (2002) ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med 166:518–624

    Article  Google Scholar 

  • Swain DP, Franklin BA (2006) Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol 97:141–147

    Article  PubMed  Google Scholar 

  • Takata M, Robotham JL (1991) Ventricular external constraint by the lung and pericardium during positive end-expiratory pressure. Am Rev Respir Dis 143:872–875

    Article  CAS  PubMed  Google Scholar 

  • Takata M, Wise RA, Robotham JL (1990) Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol 69:1961–1972

    CAS  PubMed  Google Scholar 

  • Taylor BJ, West CR, Romer LM (2010) No effect of arm-crank exercise on diaphragmatic fatigue or ventilatory constraint in Paralympic athletes with cervical spinal cord injury. J Appl Physiol 109:358–366

    Article  PubMed  Google Scholar 

  • Terson de Paleville D, Lorenz D (2015) Compensatory muscle activation during forced respiratory tasks in individuals with chronic spinal cord injury. Respir Physiol Neurobiol 217:54–62

    Article  PubMed  Google Scholar 

  • Terson de Paleville D, McKay W, Aslan S et al (2013) Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury. Respir Physiol Neurobiol 189:491–497

    Article  PubMed  Google Scholar 

  • Thijssen DH, Steendijk S, Hopman MT (2009) Blood redistribution during exercise in subjects with spinal cord injury and controls. Med Sci Sports Exerc 41:1249–1254

    Article  PubMed  Google Scholar 

  • Uijl SG, Houtman S, Folgering HT et al (1999) Training of the respiratory muscles in individuals with tetraplegia. Spinal Cord 37:575–579

    Article  CAS  PubMed  Google Scholar 

  • Urmey W, Loring S, Mead J et al (1986) Upper and lower rib cage deformation during breathing in quadriplegics. J Appl Physiol 60:618–622

    CAS  PubMed  Google Scholar 

  • Uva B, Aliverti A, Bovio D et al (2015) The “Abdominal Circulatory Pump”: An Auxiliary Heart during Exercise? Front Physiol 6:411

    PubMed  Google Scholar 

  • Van Loan MD, McCluer S, Loftin JM et al (1987) Comparison of physiological responses to maximal arm exercise among able-bodied, paraplegics and quadriplegics. Paraplegia 25:397–405

    Article  CAS  PubMed  Google Scholar 

  • Verges S, Flore P, Nantermoz G et al (2009) Respiratory muscle training in athletes with spinal cord injury. Int J Sports Med 30:526–532

    Article  CAS  PubMed  Google Scholar 

  • Wadsworth BM, Haines TP, Cornwell PL et al (2009) Abdominal binder use in people with spinal cord injuries: a systematic review and meta-analysis. Spinal Cord 47:274–285

    Article  CAS  PubMed  Google Scholar 

  • Warburton DE, Eng JJ, Krassioukov A et al (2007) Cardiovascular health and exercise rehabilitation in spinal cord injury. Top Spinal Cord Inj Rehabil 13:98–122

    Article  PubMed  PubMed Central  Google Scholar 

  • West CR, Romer LM (2010) Cholinergic bronchomotor tone and airway resistance in Paralympic athletes with spinal cord injury. Eur Respir J 36:508s

    Google Scholar 

  • West CR, Campbell IG, Romer LM (2012a) Assessment of pulmonary restriction in cervical spinal cord injury: a preliminary report. Arch Phys Med Rehabil 93:1463–1465

    Article  PubMed  Google Scholar 

  • West CR, Campbell IG, Shave RE et al (2012b) Resting cardiopulmonary function in Paralympic athletes with cervical spinal cord injury. Med Sci Sports Exerc 44:323–329

    Article  PubMed  Google Scholar 

  • West CR, Campbell IG, Shave RE et al (2012c) Effects of abdominal binding on cardiorespiratory function in cervical spinal cord injury. Respir Physiol Neurobiol 180:275–282

    Article  PubMed  Google Scholar 

  • West CR, Romer LM, Krassioukov A (2013) Autonomic function and exercise performance in elite athletes with cervical spinal cord injury. Med Sci Sports Exerc 45:261–267

    Article  PubMed  Google Scholar 

  • West CR, Goosey-Tolfrey VL, Campbell IG et al (2014a) Effect of abdominal binding on respiratory mechanics during exercise in athletes with cervical spinal cord injury. J Appl Physiol 117:36–45

    Article  PubMed  PubMed Central  Google Scholar 

  • West CR, Taylor BJ, Campbell IG et al (2014b) Effects of inspiratory muscle training on exercise responses in Paralympic athletes with cervical spinal cord injury. Scand J Med Sci Sports 24:764–772

    Article  CAS  PubMed  Google Scholar 

  • West CR, Campbell IG, Goosey-Tolfrey VL et al (2014c) Effects of abdominal binding on field-based exercise responses in Paralympic athletes with cervical spinal cord injury. J Sci Med Sport 17:351–355

    Article  PubMed  Google Scholar 

  • Wicks JR, Oldridge NB, Cameron BJ et al (1983) Arm cranking and wheelchair ergometry in elite spinal cord-injured athletes. Med Sci Sports Exerc 15:224–231

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Kayser B (1997) Differential inspiratory muscle pressure contributions to breathing during dynamic hyperinflation. Am J Respir Crit Care Med 156:497–503

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. West .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

West, C.R., Sheel, A.W., Romer, L.M. (2016). Respiratory System Responses to Exercise in Spinal Cord Injury. In: Taylor, J. (eds) The Physiology of Exercise in Spinal Cord Injury. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6664-6_4

Download citation

Publish with us

Policies and ethics