Skip to main content

MRI and MRCP for Diagnosis and Staging of Pancreatic Cancer 2nd Ed

  • Living reference work entry
  • First Online:
Pancreatic Cancer
  • 513 Accesses

Abstract

Magnetic resonance imaging (MRI) has conventionally taken a secondary role to CT in the staging of pancreatic adenocarcinoma. It has been used for the evaluation of the pancreas in equivocal CT findings, in patients who are unable to have iodinated contrast media or to avoid using ionizing radiation.

However, MRI is particularly useful for the assessment of small pancreatic lesions, differentiating benign from malignant pancreatic lesions, and the assessment of cystic pancreatic masses, and has an invaluable role in the preoperative assessment prior to enucleation surgery. This chapter will cover the MRI sequences used for the diagnosis and staging of pancreatic neoplasms, the advantages and disadvantages of MRI, and will describe the mimics of pancreatic cancer, and other pancreatic neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Callery MP, Chang KJ, Fishman EK, et al. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Am Surg Oncol. 2009;16:1727–33.

    Article  Google Scholar 

  2. Schima W, Ba-Ssalamah A, Goetzinger P, et al. State-of-the-art magnetic resonance imaging of pancreatic cancer. Top Magn Reson Imaging. 2007;18:421–9.

    Article  PubMed  Google Scholar 

  3. Ichikawa T, Haradome H, Hachiya J, et al. Pancreatic ductal adenocarcinoma: preoperative assessment with helical CT versus dynamic MRI imaging. Radiology. 1997;202:655–62.

    Article  CAS  PubMed  Google Scholar 

  4. Kauhanen SP, Komar G, Seppanen MP, et al. Aprospective diagnostic accuracy study of 18F-flurodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann Surg. 2009;250:957–63.

    Article  PubMed  Google Scholar 

  5. Koelblinger C, Ba-Ssalamah A, Goetzinger P, Puchner S, Weber M, Sahora K, et al. Gadobenate dimeglumine-enhanced 3.0-T MR imaging versus multiphasic 64-detector row CT: prospective evaluation in patients suspected of having pancreatic cancer. Radiology. 2011;259:757–66.

    Google Scholar 

  6. Ly JN, Miller FH. MR imaging of the pancreas: a practical approach. Radiol Clin N Am. 2002;40:1289–306.

    Article  PubMed  Google Scholar 

  7. Semelka RC, Kroeker MA, Shoenut JP, et al. Pancreatic disease: prospective comparison of CT, ERCP, and 1.5-T MR imaging with dynamic gadolinium enhancement and fat suppression. Radiology. 1991;181:785–91.

    Article  CAS  PubMed  Google Scholar 

  8. De Robertis R, Martini PT, Demozzi E, et al. Diffusion-weighted imaging of pancreatic cancer. World J Radiol. 2015;7(10):319–28.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Westbrook C, Kaut Roth C, Talbot J. MRI in practice. Oxford: Wiley; 2011.

    Google Scholar 

  10. McRobbie DW, Moore EA, Graves MJ. MRI from picture to proton. Cambridge: Cambridge University Press; 2017.

    Book  Google Scholar 

  11. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188:1622–35.

    Article  PubMed  Google Scholar 

  12. Schima W. MRI of the pancreas: tumours and tumour stimulating processes. Cancer Imaging. 2006;6:199–203.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee ES, Lee JM. Imaging diagnosis of pancreatic cancer: a state of the art review. Word J Gastroenterol. 2014;20(24):7864–77.

    Article  Google Scholar 

  14. Tirkes T, Sandrasegaran K, Sanyal R, et al. Secrtin-enhanced MR cholangiopancreatography: spectrum of findings. Radiographics. 2013;33:1889–906.

    Google Scholar 

  15. Li A, Wong CS, Wong MK, et al. Acute adverse reactions to magnetic resonance contrast media: gadolinium chelates. Br J Radiol. 2006;79(941):368–71.

    Article  CAS  PubMed  Google Scholar 

  16. Hunt CH, Hartman RP, Hesley GK, et al. Frequency and severity of adverse effects of iodinated and gadolinium contrast materials: retrospective review of 456,930 doses. AJR. 2009;193(4):1124–7.

    Article  PubMed  Google Scholar 

  17. Bleicher AG, Kanal E. Assessment of adverse reaction rates to a newly approved MRI contrast agent: review of 23,553 administrations of gadobenate dimeglumine. AJR. 2008;191(1):307–11.

    Article  Google Scholar 

  18. Spinazzi A. Identification and management of acute reactions to gadolinium-based contrast agents. MRI bioeffects, safety, and patient management. 4th ed. Los Angeles: Biomedical Research Publishing Group; 2014. p. 242–55.

    Google Scholar 

  19. Jung JW, Kang HR, Kim MH, et al. Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology. 2012;264(2):414–22.

    Article  PubMed  Google Scholar 

  20. ACR. Manual on contrast media, version 10.2. 2016; https://www.acr.org/Quality-Safety/Resources/Contrast-Manual. Accessed 15 Feb 2017.

  21. Jingu A, Fukuda J, Taketomi-Takahashi T, et al. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol. BMC Med Imaging. 2014;14:34.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jung JW, Choi YH, Park CM, et al. Outcomes of corticosteroid prophylaxsis for hypersensitivity reactions to low osmolar contrast media in high risk patients. Ann Allergy Asthma Immunol. 2016;117:304–9.

    Article  CAS  PubMed  Google Scholar 

  23. Grobner T. Gadolinium-a specific trigger for the development of nephrogenic systemic fibrosis dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21:1104–8.

    Article  CAS  PubMed  Google Scholar 

  24. Cowper SE, Rabach M, Girardi M. Clinical and histological findings in nephrogenic systemic fibrosis. Eur J Radiol. 2008;66:191–9.

    Article  PubMed  Google Scholar 

  25. Morcos SK. Extracellular gadolinium contrast agents: differences in stability. Eur J Radiol. 2008;66:175–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ersoy H, Rybicki FJ. Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. JMRI. 2007;26(5):1190–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Todd DJ, Kagan A, Chibnik LB, et al. Cutaenous changes of nephrogenic systemic fibrosis: predictor of early mortality and association with gadolinium exposure. Arthritis Rheum. 2007;56:3433–41.

    Article  PubMed  Google Scholar 

  28. Panesar M, Banerjee S, Barone GW. Cinical improvement of nephrogenic systemic fibrosis after kidney transplantation. Clin Transpl. 2008;22:803–8.

    Article  Google Scholar 

  29. Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243:148–57.

    Article  PubMed  Google Scholar 

  30. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA. Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol. 2007;188:586–92.

    Article  PubMed  Google Scholar 

  31. Prince MR, Zhang HL, Roditi GH, et al. Risk factors for NSF: a literature review. J Magn Reson Imaging. 2009;30:1298–308.

    Article  PubMed  Google Scholar 

  32. Fraum TJ, Ludwig MD, Bashir MR, Fowler KJ. Gadolinium-base contrast agents: a comprehensive risk assessment. J Magn Reson Imaging. 2017:1–16. doi:10.1002/jmri.25625.

    Google Scholar 

  33. Kim JH, Park SH, Yu ES, et al. Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology. 2010;257:87–96.

    Article  PubMed  Google Scholar 

  34. Schima W, Fugger R, Schober E, et al. Diagnosis and staging of pancreatic cancer: comparison of mangafodipir-enhanced MRI and contrast-enhanced helical hydro-CT. AJR. 2002;179:717–24.

    Article  PubMed  Google Scholar 

  35. Rieber A, Tomczak R, Nüssle K, Klaus H, Brambs HJ. MRI with mangafodipir trisodium in the detection of pancreatic tumours: comparison with helical CT. Br J Radiol. 2000;73:1165–9.

    Article  CAS  PubMed  Google Scholar 

  36. Miller FH, Rini NJ, Keppe AL. MRI of adenocarcinoma of the pancreas. AJR. 2008;187:365–74.

    Article  Google Scholar 

  37. Matsuki M, Inada Y, Nakai G, Tatsugami F, Tanikake M, Narabayashi I, et al. Diffusion-weighed MR imaging of pancreatic carcinoma. Abdom Imaging. 2007;32:481–3.

    Google Scholar 

  38. Chikawa T, Erturk SM, Motosugi U, Sou H, Iino H, Araki T, et al. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol. 2007;188:409–14.

    Google Scholar 

  39. Hao JG, Wang JP, Gu YL, Lu ML. Importance of b value in diffusion weighted imaging for the diagnosis of pancreatic cancer. World J Gastroenterol. 2013;19:6651–5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Chen ZE, Nikolaidis P, McCarthy RJ, Merrick L, Sternick LA, et al. Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade. J Magn Reson Imaging. 2011;33:136–42.

    Google Scholar 

  41. Brenner R, Metens T, Bali M, Demetter P, Matos C. Pancreatic neuroendocrine tumor: added value of fusion of T2-weighted imaging and high b-value diffusion-weighted imaging for tumor detection. Eur J Radiol. 2012;81:e746–9.

    Article  PubMed  Google Scholar 

  42. Fukukura Y, Takumi K, Kamimura K, Shindo T, Kumagae Y, Tateyama A, et al. Pancreatic adenocarcinoma: variability of diffusion-weighted MR imaging findings. Radiology. 2012;263:732–40.

    Google Scholar 

  43. Yao XZ, Yun H, Zeng MS, et al. Evaluation of ADC measurements among solid pancreatic masses by respiratory-triggered diffusion-weighted MR imaging with inversion-recovery fat-suppression technique at 3.0T. Magn Reson Imaging. 2013;31:524–8.

    Article  PubMed  Google Scholar 

  44. Lee JK, Kim AY, Kim PN, Lee MG, Ha HK. Prediction of vascular involvement and resectability by multidetector-row CT versus MR imaging with MR angiography in patients who underwent surgery for resection of pancreatic ductal adenocarcinoma. Eur J Radiol. 2010;73:310–6.

    Article  PubMed  Google Scholar 

  45. Valls C, Andía E, Sanchez A, Fabregat J, Pozuelo O, Quintero JC, et al. Dual-phase helical CT of pancreatic adenocarcinoma: assessment of resectability before surgery. AJR Am J Roentgenol. 2002;178:821–6.

    Google Scholar 

  46. Kim YK, Park G, Kim CS, Yu HC, Han YM. Diagnostic ef cacy of gadoxetic acid-enhanced MRI for the detection of liver metastases: comparison with multidetector-row CT. Br J Radiol. 2012;85:539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holzapfel K, Reiser-Erkan C, Fingerle AA, et al. Comparison of diffusion- weighted MR imaging and multidetector-row CT in the detection of liver metastases in patients operated for pancreatic cancer. Abdom Imaging. 2011;36:179–84.

    Article  PubMed  Google Scholar 

  48. Niekel MC, Bipat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology. 2010;257:674–84.

    Article  PubMed  Google Scholar 

  49. Danet IM, Semelka RC, Nagase LL, Woosely JT, Leonardou P, Armao D. Liver metastases from pancreatic adenocarcinoma: MR imaging characteristics. J Magn Reson Imaging. 2003;18:181–8.

    Article  PubMed  Google Scholar 

  50. Donahue TR, Isacoff WH, Hines OJ, et al. Downstaging chemotherapy and alteration in the classic computed tomography/magnetic resonance imaging signs of vascular involvement in patients with pancreatobiliary malignant tumours: influence on patient selection for surgery. Arch Surg. 2011;146:836–43.

    Article  PubMed  Google Scholar 

  51. Low G, Panu A, Millo N, Leen E. Multimodality imaging of neoplastic and non-neoplastic solid lesions of the pancreas. Radiographics. 2011;31:933–1015.

    Article  Google Scholar 

  52. Choi SY, Kim SH, Kang TW, et al. Differentiating mass forming autoimmune pancreatitis from pancreatic ductal adenocarcinoma on the basis of contrast enhanced MRI and DWI findings. AJR. 2016;206:291–300.

    Article  PubMed  Google Scholar 

  53. Nakatani K, Watanabe Y, Okumura A, et al. MR imaging features of solid-pseudopapillary tumour of the pancreas. Magn Reson Med Sci. 2007;6(2):121–6.

    Article  PubMed  Google Scholar 

  54. Gijon de la Santa L, Retortillo JAP, Camarero A, et al. Radiology of pancreatic neoplasms: an update. World J Gatrointest Oncol. 2014;6(9):330–43.

    Google Scholar 

  55. Wang Y, Miller FH, Chen ZE, et al. Diffusion weighted MR imaging of solid and cystic lesions of the pancreas. Radiographics. 2011;31(3):E47–65.

    Article  PubMed  Google Scholar 

  56. Procacci C, Carbognin G, Accordini S, et al. Non-functioning endocrine tumours of the pancreas: possibilities of spiral CT characterisation. Eur Radiol. 2001;11:1175–83.

    Article  CAS  PubMed  Google Scholar 

  57. McAuley G, Delaney H, Colville J, et al. Multimodality preoperative imaging of pancreatic insulinomas. Clin Radiol. 2005;60(10):1039–50.

    Article  CAS  PubMed  Google Scholar 

  58. Merkle EM, Bender GN, Brambs HJ. Imaging findings in pancreatic lymphoma: differential aspects. AJR. 2000;174(3):671–5.

    Article  CAS  PubMed  Google Scholar 

  59. Klein KA, Stephens DH, Welch TJ. CT characteristics of metastatic disease of the pancreas. Radiographics. 1998;18:369–78.

    Article  CAS  PubMed  Google Scholar 

  60. Procacci C, Megibow AJ, Carbognin G, Guarise A, Spoto E, Biasiutti C, et al. Intraductal papillary mucinous tumor of the pancreas: a pictorial essay. Radiographics. 1999;19:1447–63.

    Google Scholar 

  61. Postlewait LM, Ethun CG, McInnis MR, et al. Association of pre-operative risk factors with malignancy in pancreatic mucinous cystic neoplasms: a multicentre study. JAMA Surg. 2017;152(1):19–25.

    Article  PubMed  Google Scholar 

  62. Ohtsuka T, Kono H, Nagayoshi Y, et al. An increase in the number of predictive factors augments the likelihood of malignancy in branch duct intraductal papillary mucinous neoplasm of the pancreas. Surgery. 2012;151:76–83.

    Article  PubMed  Google Scholar 

  63. Levy P, Jounnaud V, O’Toole D, et al. Natural history of intraductal papillary mucinous tumours of the pancreas: actuarial risk of malignancy. Clin Gastroenterol Hepatol. 2006;4(4):460–8.

    Article  PubMed  Google Scholar 

  64. Tanaka M, Castillo C, Assay V, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12:183–97.

    Article  PubMed  Google Scholar 

  65. Tanaka M, Chari V, Adsay C, et al. International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology. 2006;6(1–2):17–32.

    Article  PubMed  Google Scholar 

  66. Taouli B, Vilgrain V, Vullierme MP, et al. Intraductal papillary mucinous tumors of the pancreas: helical CT with histopathologic correlation. Radiology. 2000;217:757–64.

    Article  CAS  PubMed  Google Scholar 

  67. Berland LL, Silverman SG, Gore RM, et al. Managing incidental findings on abdominal CT: white paper of the ACR incidental findings committee. J Am Coll Radiol. 2010;7:754–77.

    Article  PubMed  Google Scholar 

  68. Marchegiani G, Fernández-del CC. Is it safe to follow side branch IPMNs? Adv Surg. 2014;48:13–25.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Mr Mark Jones,

Superintendent MRI Radiographer

Royal Liverpool and Broadgreen University Hospital Trust

Mark.jones@rlbuht.nhs.uk

Dr R. Albazaz,

Consultant Radiologist

Leeds Teaching Hospital NHS trust

r.albazaz@nhs.net

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya R. Healey .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Healey, P.R. (2017). MRI and MRCP for Diagnosis and Staging of Pancreatic Cancer 2nd Ed. In: Neoptolemos, J., Urrutia, R., Abbruzzese, J., Büchler, M. (eds) Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6631-8_91-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6631-8_91-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6631-8

  • Online ISBN: 978-1-4939-6631-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics