Skip to main content

Tracking Tau in Neurons: How to Transfect and Track Exogenous Tau into Primary Neurons

  • Protocol
  • First Online:
Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1523))

Abstract

Primary neurons have proved to be an essential tool for investigating neuronal polarity in general and polarized Tau distribution in particular. However, mature primary neurons are notoriously difficult to transfect with nonviral vectors and are very sensitive both to cytoskeletal manipulation and to imaging. Common nonviral transfections require the use of a monolayer of supportive glia or high density cultures, both of which complicate imaging. Here, we provide a simple nonviral transfection method enabling transfection of Tau to achieve expression levels comparable to endogenous Tau. This allows to investigate specific effects on, e.g., distribution and transport of Tau, without grossly affecting other cytoskeleton-based parameters such as microtubule density or microtubule-based transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thies E, Mandelkow E-M (2007) Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci 27:2896–2907. doi:10.1523/JNEUROSCI.4674-06.2007

    Article  CAS  PubMed  Google Scholar 

  2. Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow E-M (2013) Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 32:2920–2937. doi:10.1038/emboj.2013.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Biernat J, Wu Y-Z, Timm T, Zheng-Fischhöfer Q, Mandelkow E, Meijer L, Mandelkow E-M (2002) Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell 13:4013–4028. doi:10.1091/mbc.02-03-0046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma VM, Litersky JM, Bhaskar K, Lee G (2007) Tau impacts on growth-factor-stimulated actin remodeling. J Cell Sci 120:748–757. doi:10.1242/jcs.03378

    Article  CAS  PubMed  Google Scholar 

  5. Whiteman IT, Gervasio OL, Cullen KM, Guillemin GJ, Jeong EV, Witting PK, Antao ST, Minamide LS, Bamburg JR, Goldsbury C (2009) Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of Alzheimer-like neuritic cytoskeletal striations. J Neurosci Off J Soc Neurosci 29:12994–13005. doi:10.1523/JNEUROSCI.3531-09.2009

    Article  CAS  Google Scholar 

  6. Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 37:721–732. doi:10.1016/j.tins.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  7. Frandemiche ML, De Seranno S, Rush T, Borel E, Elie A, Arnal I, Lanté F, Buisson A (2014) Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers. J Neurosci 34:6084–6097. doi:10.1523/JNEUROSCI.4261-13.2014

    Article  PubMed  Google Scholar 

  8. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan L-L, Ashe KH, Liao D (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68:1067–1081. doi:10.1016/j.neuron.2010.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X, Kumar Y, Zempel H, Mandelkow E-M, Biernat J, Mandelkow E (2011) Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J 30:4825–4837. doi:10.1038/emboj.2011.376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Eckhard Mandelkow for support. We are grateful for funding from DZNE and MPG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Zempel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zempel, H., Luedtke, J., Mandelkow, EM. (2017). Tracking Tau in Neurons: How to Transfect and Track Exogenous Tau into Primary Neurons. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 1523. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6598-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6598-4_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6596-0

  • Online ISBN: 978-1-4939-6598-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics