Skip to main content

Recovery Technologies for Water-Soluble Bioactives: Advances in Membrane-Based Processes

  • Chapter
  • First Online:
Engineering Foods for Bioactives Stability and Delivery

Part of the book series: Food Engineering Series ((FSES))

Abstract

In this chapter, an overview of membrane separation systems in the food industry is provided. Basic principles of pressure-driven membrane operations are described, together with some key advantages and shortcomings compared to conventional technologies. Selected applications of membrane unit operations and integrated membrane systems in specific areas of agro-food production (dairy, soybean, fish processing, olive oil) are also reviewed and discussed, highlighting their potential with respect to the separation, concentration and purification of high-added-value compounds, improvement in food quality and the reduction of environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

Constant ([-])

b :

Constant ([-])

c :

Constant ([-])

C :

Concentration ([mol m−3, mol L−1])

d :

Constant ([-])

d h :

Hydraulic diameter ([m])

D :

Diffusion coefficient ([m2 s−1])

J s :

Solute flux ([mol m−2 s−1])

J v :

Volume flux ([m s−1])

k :

Mass transfer coefficient ([m s−1])

l :

Membrane thickness ([m])

L :

Length ([m])

P :

Permeability ([mol m−1 s−1 Pa−1])

p :

Pressure ([Pa or bar])

R :

Rejection ([-])

R :

Resistance ([m−1])

Re :

Reynolds number ([-])

Sc :

Schmidt number ([-])

Sh :

Sherwood number ([-])

t :

Time ([s])

u :

Velocity ([m s−1])

V :

Volume ([m3])

VCR:

Volume concentration ratio ([-])

WCR:

Weight concentration ratio ([-])

Y:

Yield ([-])

δ:

Boundary layer thickness ([m])

:

Difference ([-])

μ :

Viscosity ([Pa s or m2 s−1])

BOD:

Biological oxygen demand

CA:

Cellulose acetate

COD:

Chemical oxygen demand

DF:

Diafiltration

Igs:

Immunoglobulins

MF:

Microfiltration

MPCs:

Milk protein concentrates

MWCO:

Molecular weight cut-off

NF:

Nanofiltration

OMW:

Olive mill wastewater

PA:

Polyamide

PAN:

Polyacrylonitrile

PE:

Polyethylene

PES:

Polyethersulphone

PP:

Polypropylene

PS:

Polysulphone

PTFE:

Polytetrafluoroethylene

PVDF:

Polyvinylidene fluoride

RSM:

Response surface methodology

RO:

Reverse osmosis

TOC:

Total organic carbon

TAA:

Total antioxidant activity

UF:

Ultrafiltration

WPCs:

Whey protein concentrates

b:

Bulk

c:

Cake

g:

Membrane wall (gel)

i:

Inlet

m:

Membrane

o:

Outlet

p:

Permeate

r:

Retentate

s:

Solute

v:

Volume

0:

Initial value

References

  • Afonso MD, Bórquez R (2002) Review of the treatment of a seafood processing wastewater and recovery of proteins therein by membrane separation processes—prospects of the ultrafiltration of wastewater from the fish meal industry. Desalination 142:29–45

    Article  CAS  Google Scholar 

  • Afonso MD, Ferrer J, Bórquez R (2004) An economic assessment of proteins recovery from fish meal effluents by ultrafiltration. Trends Food Sci Technol 15:506–512

    Article  CAS  Google Scholar 

  • Aguiar Prudêncio AP, Prudêncio ES, Castanho Amboni RDM et al (2012) Phenolic composition and antioxidant activity of the aqueous extract of bark from residues from mate tree (Ilex paraguariensis St. Hil.) bark harvesting concentrated by nanofiltration. Food Bioprod Process 90:399–405

    Article  Google Scholar 

  • Ali F, Ippersiel D, Lamarche F et al (2010) Characterization of low-phytate soy protein isolates produced by membrane technologies. Innov Food Sci Emerg Tech 11:162–168

    Article  CAS  Google Scholar 

  • Atra R, Vatai G, Bekassy-Molnar E et al (2005) Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. J Food Eng 67:325–332

    Article  Google Scholar 

  • Baker WR (2000) Membrane technologies and applications. Mc-Graw-Hill Companies, New York

    Google Scholar 

  • Bhattacharya S, Hwang ST (1997) Concentration polarization, separation factor, and Peclet number in membrane processes. J Membr Sci 132:73–90

    Article  CAS  Google Scholar 

  • Boerlage SFE, Kennedy M, Tarawneh Z et al (2004) Development of the MFI-UF in constant flux filtration. Desalination 161:103–113

    Article  CAS  Google Scholar 

  • Cassano A, Conidi C, Giorno L et al (2013) Fractionation of olive mill wastewater by membrane separation techniques. J Hazard Mater 248–249:185–193

    Article  Google Scholar 

  • Cissé M, Vaillant F, Pallet D et al (2011) Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.). Food Res Int 44:2607–2614

    Article  Google Scholar 

  • Conidi C, Cassano A, Drioli E (2011) A membrane-based study for the recovery of polyphenols from bergamot juice. J Membr Sci 375:182–190

    Article  CAS  Google Scholar 

  • Conidi C, Cassano A, Drioli E (2012) Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod Process 90:867–874

    Article  CAS  Google Scholar 

  • Daufin G, Escudier JE, Carrère H et al (2001) Recent and emerging applications of membrane processes in the food and dairy industry. Trans IChemE 79:89–102

    CAS  Google Scholar 

  • Deeslie WD, Cheryan M (1991) Fractionation of soy protein hydrolysates using ultrafiltration membranes. J Food Sci 57:411–413

    Article  Google Scholar 

  • Denis C, Massé A, Fleurence J et al (2009) Concentration and pre-purification with ultrafiltration of a R-phycoerythrin solution extracted from macro-algae Grateloupia turuturu: process definition and up-scaling. Sep Purif Technol 69:37–42

    Article  CAS  Google Scholar 

  • Di Donna L, De Luca G, Mazzotti F et al (2009) Stain-like principles of Bergamot fruit (Citrus bergamia): isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J Nat Prod 72:1352–1354

    Article  Google Scholar 

  • Diaz-Reinoso B, Moure A, Dominguez H et al (2009) Ultra- and nanofiltration of aqueous extracts from distilled fermented grape pomace. J Food Eng 91:587–593

    Article  CAS  Google Scholar 

  • Diaz-Reinoso B, Moure A, Dominguez H et al (2011) Membrane concentration of antioxidants from Castanea sativa leaves aqueous extracts. Chem Eng J 175:95–102

    Article  CAS  Google Scholar 

  • Federici F, Fava F, Kalogerakis N et al (2009) Valorisation of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill wastewaters. J Chem Technol Biotechnol 84:895–900

    Article  CAS  Google Scholar 

  • Garcia-Castello E, Cassano A, Criscuoli C et al (2010) Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res 44:3883–3892

    Article  CAS  Google Scholar 

  • Garcia Garcia I, Jimenez Peña PR, Bonilla Venceslada JL et al (2000) Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Getrichum candidum. Process Biochem 35:751–758

    Article  Google Scholar 

  • Gernigon G, Schuck P, Jeantet R (2011) Demineralization. In: Fuquay JW, Fox PF, McSweeney PLH (Eds) Encyclopedia of dairy science. Elsevier, London, pp 738–743

    Google Scholar 

  • Gilewica-Łukasik B, Koter S, Kurzawa J (2007) Concentration of anthocyanins by the membrane filtration. Sep Purif Technol 57:418–424

    Article  Google Scholar 

  • Gonzáles MI, Alvarez S, Riera FA et al (2008) Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination 228:84–96

    Article  Google Scholar 

  • Guizard C, Amblard P (2009) Current status and prospects for ceramic membranes application. In: Pabby K, Rizvi S, Sastre A (eds) Handbook of membrane separation: chemical, pharmaceutical, food and biotechnological applications. Taylor Francis Group, Boca Raton, pp 139–179

    Google Scholar 

  • Gu HF, Li CM, Xu YJ (2008) Structural features and antioxidant activity of tannin from persimmon pulp. Food Res Int 41:208–217

    Article  CAS  Google Scholar 

  • Guu JK, Chiu CH, Young JK (1997) Processing of soybean soaking water with a NF-RO membrane system and lactic acid fermentation of retained solutes. J Agric Food Chem 45:4096–4100

    Article  CAS  Google Scholar 

  • Jiang B, Wang J (2013) Method for extracting soy protein, oligosaccharide and isoflavone from soybean wastewater by one-step process. Chinese patent CN103265614-A

    Google Scholar 

  • Kalbasi A, Cisneros-Zevallos L (2007) Fractionation of monomeric and polymeric anthocyanins from concord grape (Vitis labrusca L.) juice by membrane ultrafiltration. J Agric Food Chem 55:7036–7042

    Article  CAS  Google Scholar 

  • Kalogerakis N, Politi M, Foteinis S et al (2013) Recovery of antioxidants from olive mill wastewaters: a viable solution that promotes their overall sustainable management. J Environ Manage 128:749–758

    Article  CAS  Google Scholar 

  • Karasau K, Glennon N, Laurence ND et al (2010) A comparison between ceramic and polymeric membrane systems for casein concentrate manufacture. Int J Dairy Technol 63:284–289

    Article  Google Scholar 

  • Kaur C, Kapoor HC (2001) Antioxidants in fruits and vegetables—the millennium’s health. Int J Food Sci Technol 36:703–725

    Article  CAS  Google Scholar 

  • Kiers G (2001) Feta in liquid form. Dairy Ind Int 66:21–21

    Google Scholar 

  • Korhonen H, Syväoja EL, Vasara E et al (1998) Pharmaceutical composition, comprising complement proteins, for the treatment of Helicabacter infections and a method for the preparation of the composition. PCT Patent Application WO98/00150

    Google Scholar 

  • Kuhn RC, Palacio L, Prádanos P et al (2011) Selection of membranes for purification of fructooligosaccharides. Desalin Water Treat 27:18–24

    Article  CAS  Google Scholar 

  • Kumar NSK, Yea MK, Cheryan M (2003) Soy protein concentrates by ultrafiltration. J Food Sci 68:2278–2283

    Article  CAS  Google Scholar 

  • Lafka T, Lazou A, Sinanoglou V et al (2011) Phenolic and antioxidant potential of olive oil mill wastes. Food Chem 125:92–98

    Article  CAS  Google Scholar 

  • Li W, Li J, Chen T et al (2004) Study on nanofiltration for purifying fructo-oligosaccharides I. Operation modes. J Membr Sci 245:123–129

    Article  CAS  Google Scholar 

  • Li J, Chase HA (2010) Applications of membrane technique for purification of natural products. Biotechnol Lett 32:601–608

    Article  CAS  Google Scholar 

  • Mameri N, Abdessemed D, Belhocine D et al (1996) Treatment of fishery washing water by ultrafiltration. J Chem Technol Biotechnol 67:169–175

    Article  CAS  Google Scholar 

  • Manak LJ, Lawhon JT, Lusas EW (1980) Functioning potential of soy, cottonseed, and peanut protein isolates produced by industrial membrane systems. J Food Sci 45:236–245

    Article  CAS  Google Scholar 

  • Market Report: Global Membrane Technology Market (2013) Ratingen. http://www.acmite.com/

  • Massé A, Vandanjon L, Jaouen P et al (2008) Upgrading and pollution reduction of fishing industry process-waters by membrane technology. In: Bergé JP (ed) Added value to fisheries wastes. Transworld Research Network, Kerala, pp 81–99

    Google Scholar 

  • Matsubara Y, Iwasaki K, Nakajima M et al (1996) Recovery of oligosaccharides from steamed soybean waste water in Tofu processing by reverse osmosis and nanofiltration membranes. Biosci Biotech Biochem 60:421–428

    Article  CAS  Google Scholar 

  • Mello BCBS, Cunha Petrus JC, Hubinger MD (2010) Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. J Food Eng 96:533–539

    Article  CAS  Google Scholar 

  • Mudimu OA, Peters M, Brauner F et al (2012) Overview of membrane processes for the recovery of polyphenols from olive mill wastewater. Am J Environ Sci 8:195–201

    Article  CAS  Google Scholar 

  • Nabarlatz D, Torras C, Garcia-Valls R et al (2007) Purification of xylo-oligosaccharides from almond shells by ultrafiltration. Sep Purif Technol 53:235–243

    Article  CAS  Google Scholar 

  • Nawaz H, Shi J, Mittal GS et al (2006) Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Sep Purif Technol 48:176–181

    Article  CAS  Google Scholar 

  • Negrão Murakami AN, de Mello Castanho Amboni RD, Prudêncio ES et al (2011) Concentration of phenolic compounds in aqueous mate (Ilex paraguariensis A. St. Hil) extract through nanofiltration. LWT—Food Sci Technol 44:2211–2216

    Google Scholar 

  • Niaounakis M, Halvadakis CP (2006) Olive processing waste management literature review and patent survey. Waste Manage Series 5:23–64

    Article  Google Scholar 

  • Nichols DJ, Cheryan M (1981) Production of soy isolates by ultrafiltration: factors affecting yield and composition. J Food Sci 46:367–372

    Article  CAS  Google Scholar 

  • Obied HK, Allen MS, Bedgood DR et al (2005) Bioactivity and analysis of biophenols recovered from olive mill waste. J Agric Food Chem 53:823–837

    Article  CAS  Google Scholar 

  • Paraskeva CA, Papadakis VG, Tsarouchi E et al (2007) Membrane processing for olive mill wastewater fractionation. Desalination 213:218–229

    Article  CAS  Google Scholar 

  • Piot M, Fauquant J, Madec MN et al (2004) Preparation of “serocolostrum” by membrane microfiltration. Lait 84:333–342

    Article  CAS  Google Scholar 

  • Pizzichini M, Russo C (2005) Process for recovering the components of olive mill wastewater with membrane technologies. Int. Patent WO 2005/123603

    Google Scholar 

  • Prodanov M, Garrido I, Vacas V et al (2008) Ultrafiltration as alternative purification procedure for the characterization of low and high molecular-mass phenolics from almond skins. Anal Chim Acta 609:241–251

    Article  CAS  Google Scholar 

  • Ramakrishna S, Zuwei M, Matsuura T (2011) Polymer membranes in biotechnology—preparation, functionalization and application. Imperial College Press, London

    Book  Google Scholar 

  • Rosenberg M (1995) Current and future applications for membrane processes in the dairy industry. Trends Food Sci Technol 6:12–19

    Article  CAS  Google Scholar 

  • Santamaria B, Salazar G, Beltrán S et al (2002) Membrane sequences for fractionation of polyphenolic extracts from defatted milled grape seeds. Desalination 148:103–109

    Article  CAS  Google Scholar 

  • Schäfer AI, Fane AG, Waite TD (2000) Fouling effects on rejection in the membrane filtration of natural waters. Desalination 131:215–224

    Article  Google Scholar 

  • Schwinge J, Neal PR, Wiley DE et al (2004) Spiral wound modules and spacers, review and analysis. J Membr Sci 242:129–153

    Article  CAS  Google Scholar 

  • Scoma A, Bertin L, Zanaroli G et al (2011) A physicochemical-biotechnological approach for an integrated valorization of olive mill wastewater. Bioresour Technol 102:10273–10279

    Article  CAS  Google Scholar 

  • Sherwood RK, Pigford RL, Wilke CR (1975) Mass transfer. McGraw Hill, New York

    Google Scholar 

  • Singh N (2007) Process for producing a high solubility, low viscosity, isoflavone-enriched soy protein isolate and the products thereof. US Patent 7,306,821 B2

    Google Scholar 

  • Singh V, Jain PK, Das C (2013) Performance of spiral wound ultrafiltration membrane module for with and without permeate recycle: experimental and theoretical consideration. Desalination 322:94–103

    Article  CAS  Google Scholar 

  • Sjöman E, Mänttäri M, Nyström M et al (2008) Xylose recovery by nanofiltration from different hemicellulose hydrolyzate feeds. J Membr Sci 310:268–277

    Article  Google Scholar 

  • Skorepova J, Moresoli C (2007) Carbohydrate and mineral removal during the production of low-phytate soy protein isolate by combined electroacidification and high shear tangential flow ultrafiltration. J Agric Food Chem 55:5645–5652

    Article  CAS  Google Scholar 

  • Sondhi R, Bhave R (2001) Role of backpulsing in fouling minimization in crossflow filtration with ceramic membranes. J Membr Sci 186:41–52

    Article  CAS  Google Scholar 

  • Sotto A, Arsuaga JM, Van der Bruggen B (2013) Sorption of phenolic compounds on NF/RO membrane surfaces: influence on membrane performance. Desalination 309:64–73

    Article  CAS  Google Scholar 

  • Strathmann H, Giorno L, Drioli E (2006) An introduction to membrane science and technology. Consiglio Nazionale delle Ricerche, Roma

    Google Scholar 

  • Susanto H, Feng Y, Ulbricht M (2009) Fouling behaviour of aqueous solutions of polyphenolic compounds during ultrafiltration. J Food Eng 91:333–340

    Article  CAS  Google Scholar 

  • Takaç S, Karakaya A (2009) Recovery of phenolic antioxidants from olive mill wastewater. Rec Patents Chem Eng 2:230–237

    Article  Google Scholar 

  • Tamime AY, Robinson RK, Kiers G (2006) Industrial manufacture of feta-type cheeses In: Tamime AY (Ed) Brined cheeses. Blackell Publishing Ltd, Oxford, pp 77–116

    Google Scholar 

  • Tylkowski B, Trusheva B, Bankova V et al (2010) Extraction of biologically active compounds from propolis and concentration of extract by nanofiltration. J Membr Sci 348:124–130

    Article  CAS  Google Scholar 

  • Tylkowski B, Tsibranska I, Kochanov R et al (2011) Concentration of biologically active compounds extracted from Sideritis ssp. L. by nanofiltration. Food Bioprod Process 89:307–314

    Article  CAS  Google Scholar 

  • Vegas R, Moure A, Dominguez H, Parajó JC, Alvarez JR, Luque S (2008) Evaluation of ultra- and nanofiltration for refining soluble products from rice husk xylan. Bioresour Technol 99:5341–5351

    Article  CAS  Google Scholar 

  • Vyas HK, Bennett RJ, Marshall AD (2000) Influence of feed properties on membrane fouling in crossflow microfiltration of particulate suspensions. Int Dairy J 10:855–861

    Article  Google Scholar 

  • Wu D, Howell JA, Field RW (1999) Critical flux measurement for model colloids. J Membr Sci 152:89–98

    Article  CAS  Google Scholar 

  • Yorgun MS, Akmehmet Balcioglu I, Saygin O (2008) Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment. Desalination 229:204–216

    Article  CAS  Google Scholar 

  • Zidney AL (1998) Protein separations using membrane filtration: new opportunities for whey fractionation. Int Dairy J 8:243–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Cassano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cassano, A. (2017). Recovery Technologies for Water-Soluble Bioactives: Advances in Membrane-Based Processes. In: Roos, Y., Livney, Y. (eds) Engineering Foods for Bioactives Stability and Delivery. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6595-3_2

Download citation

Publish with us

Policies and ethics