Skip to main content

Protective Performance of Delivery Systems in Production, Shelf Life and Digestion

  • Chapter
  • First Online:
Engineering Foods for Bioactives Stability and Delivery

Part of the book series: Food Engineering Series ((FSES))

  • 1481 Accesses

Abstract

Protection is one of the major aims when designing delivery systems. Depending on the encapsulant, this may refer to minimisation of losses of volatile compounds, prevention of chemical deterioration or protection against an unintended release of the encapsulant. Specific examples are discussed in the present chapter. Important delivery systems are based on glassy carbohydrate-containing matrices prepared by spray drying, extrusion or spray granulation. These delivery systems provide excellent oxygen barrier properties. The impact of the molecular weight profile on molecular mobility and permeation of small molecules is discussed. The presence of low molecular weight carbohydrates generally improves the protective performance in the glassy state. A key characteristic in this context is the molecular free volume, which undergoes significant changes upon moisture sorption. Protective performance of hydrogel-based delivery systems, which are frequently used for immobilisation or in vivo delivery of an encapsulant, depends on diffusional phenomena and mechanical stability of the delivery systems. Since it becomes evident that protection is intrinsically tied to the structure of a delivery system, analytical methods to monitor the protective performance are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida PF, Almeida AJ (2004) Cross-linked alginate-gelatine beads: a new matrix for controlled release of pindolol. J Controlled Release 97:431–439

    Google Scholar 

  • Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18:240–251

    Google Scholar 

  • Andersen AB, Risbo J, Andersen ML, Skibsted LH (2000) Oxygen permeation through oil-encapsulating glassy food matrix studied by ESR line broadening using a nitroxyl spin probe. Food Chem 70(4):499–508

    Article  CAS  Google Scholar 

  • Anwar SH, Kunz B (2011) The influence of drying methods on the stabilization of fish oil microcapsules: comparison of spray granulation, spray drying, and freeze drying. J Food Eng 105(2):367–378

    Google Scholar 

  • Balasubramanian S, Panigrani S (2011) Solid phase microextraction (SPME) techniques for quality characterization of food products: a review. Food Bioprocess Technol 4:1–26

    Article  CAS  Google Scholar 

  • Baldwin EA, Bai J, Plotto A, Dea S (2011) Electronic noses and tongues: applications for the food and pharmaceutical industries. Sensors (Basel, Switzerland) 11(5):4744–4766

    Google Scholar 

  • Bellich B, Borgogna M, Cok M, Cesàro A (2011) Release properties of hydrogels: water evaporation from alginate gel beads. Food Biophys 6(2):259–266

    Article  Google Scholar 

  • Berger RG (2007) Flavours and fragrances. Springer, New York

    Book  Google Scholar 

  • Bilbao-Sáinz C, Avena-Bustillos RJ, Wood DF, Williams TG, McHugh TH (2010) Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. J Agric Food Chem 58(6):3753–3760

    Article  CAS  Google Scholar 

  • Biniecka M, Caroli S (2011) Analytical methods for the quantification of volatile aromatic compounds. TrAC Trends Anal Chem 30(11):1756–1770

    Article  CAS  Google Scholar 

  • Blandino A, Macias M, Cantero D (1999) Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics. J Biosci Bioeng 88(6):686–689

    Article  CAS  Google Scholar 

  • Bodmeier R, Wang J (1993) Microencapsulation of drugs with aqueous colloidal polymer dispersions. J Pharm Sci 82(2):191–194

    Article  CAS  Google Scholar 

  • Borgogna M, Bellich B, Cesàro A (2011) Marine polysaccharides in microencapsulation and application to aquaculture: “from sea to sea”. Mar Drugs 9(12):2572–2604

    Article  CAS  Google Scholar 

  • Borgogna M, Bellich B, Zorzin L, Lapasin R, Cesàro A (2010) Food microencapsulation of bioactive compounds: rheological and thermal characterisation of non-conventional gelling system. Food Chem

    Google Scholar 

  • Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J 15(3):237

    Google Scholar 

  • Cayot N, Dury-Brun C, Karbowiak T, Savary G, Voilley a (2008) Measurement of transport phenomena of volatile compounds: a review. Food Res Int 41(4):349–362

    Article  CAS  Google Scholar 

  • Chai Y, Mei L-H, Wu G-L, Lin D-Q, Yao S-J (2004) Gelation conditions and transport properties of hollow calcium alginate capsules. Biotechnol Bioeng 87(2):228–233

    Article  CAS  Google Scholar 

  • Champagne CP, Fustier P (2007) Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol 18:184–190

    Google Scholar 

  • Chan AW, Neufeld RJ (2010) Tuneable semi-synthetic network alginate for absorptive encapsulation and controlled release of protein therapeutics. Biomaterials 31(34):9040–9047

    Article  CAS  Google Scholar 

  • Chen H, Ouyang W, Lawuyi B, Prakash S (2006) Genipin cross-linked alginate-chitosan microcapsules: membrane characterization and optimization of cross-linking reaction. Biomacromolecules 7(7):2091–2098

    Article  CAS  Google Scholar 

  • Chen L, Subirade M (2006) Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials 27(26):4646–4654

    Article  CAS  Google Scholar 

  • Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Controlled Release 162(1):56–67

    Article  CAS  Google Scholar 

  • Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Controlled Release 119:5–24

    Google Scholar 

  • Da Silva MA, Bierhalz ACK, Kieckbusch TG (2009) Alginate and pectin composite films crosslinked with Ca2+ ions: effect of the plasticizer concentration. Carbohydr Polym 77(4):736–742

    Article  CAS  Google Scholar 

  • De Moura MR, Aouada Fa, Avena-Bustillos RJ, McHugh TH, Krochta JM, Mattoso LHC (2009) Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng 92(4):448–453

    Article  CAS  Google Scholar 

  • De Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20(4):292–302. Retrieved from <Go to ISI>://000275924800013

    Google Scholar 

  • Desobry S, Netto FM, Labuza TP (1999) Influence of maltodextrin systems at an equivalent 25DE on encapsulated b-carotene loss during storage. J Food Process Preserv 23(1):39–55

    Article  CAS  Google Scholar 

  • Dogan N, McHugh TH (2007) Effects of microcrystalline cellulose on functional properties of hydroxy propyl methyl cellulose microcomposite films. J Food Sci 72(1):E016–E022

    Article  CAS  Google Scholar 

  • Dong Z, Wang Q, Du Y (2006) Alginate/gelatin blend films and their properties for drug controlled release. J Membr Sci 280(1–2):37–44

    Article  CAS  Google Scholar 

  • Dressman JB, Amidon GL, Reppas C, Shah VP (1998) Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res 15:11–22

    Google Scholar 

  • Drusch S, Mannino S (2009) Patent-based review on industrial approaches for the microencapsulation of oils rich in polyunsaturated fatty acids. Trends Food Sci Technol 20:237–244

    Article  CAS  Google Scholar 

  • Drusch S, Regier M, Bruhn M (2012) Recent advances in the microencapsulation of oils high in polyunsaturated fatty acids. In McElhatton A, do Amaral Sobral PJ (eds) Novel technologies in food science—their impact on products, consumer trends and environment. Springer, New York, pp 159–181

    Google Scholar 

  • Drusch S, Serfert Y, Scampicchio M, Schmidt-Hansberg B, Schwarz K (2007) Impact of physicochemical characteristics on the oxidative stability of fish oil microencapsulated by spray-drying. J Agric Food Chem 55:11044–11051

    Article  CAS  Google Scholar 

  • Drusch S, Rätzke K, Shaikh MQ, Serfert Y, Steckel H, Scampicchio M, Voigt I et al (2009) Differences in free volume elements of the carrier matrix affect the stability of microencapsulated lipophilic food ingredients. Food Biophys 4(1):42–48

    Article  Google Scholar 

  • Drusch S, Serfert Y, Van Den Heuvel A, Schwarz K (2006) Physicochemical characterization and oxidative stability of fish oil encapsulated in an amorphous matrix containing trehalose. Food Res Int 39(7):807–815

    Article  CAS  Google Scholar 

  • Edlund U, Yu Y, Zhu Ryberg Y, Krause-Rehberg R, Albertsson A-C (2012) Positron lifetime reveals the nano level packing in complex polysaccharide-rich hydrolysate matrixes. Anal Chem 84:3676–3681

    Article  CAS  Google Scholar 

  • Esser E, Tessmar JKV (2013) Preparation of well-defined calcium cross-linked alginate films for the prevention of surgical adhesions. J Biomed Mater Res B Appl Biomater 101(5):826–839

    Article  CAS  Google Scholar 

  • Falco GM, Poortinga AT, Oversteegen SM (2013) Transport of nitrogen gas in glassy maltodextrins. J Membr Sci 428(1):480–488

    Article  CAS  Google Scholar 

  • Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A (2011) Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci Technol 22(6):292–303

    Article  CAS  Google Scholar 

  • Faroongsarng D, Sukonrat P (2008) Thermal behavior of water in the selected starch- and cellulose-based polymeric hydrogels. Int J Pharm 352(1–2):152–158

    Article  CAS  Google Scholar 

  • Ferreiro M, Tillman L (2002) Alginate/poly-l-lysine microparticles for the intestinal delivery of antisense oligonucleotides. Pharm Res 19(6):755–764

    Article  CAS  Google Scholar 

  • Frankel EN (2005) Lipid oxidation. The Oily Press, Bridgwater

    Book  Google Scholar 

  • Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB (1998) Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res 15:698–705

    Article  CAS  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review. J Controlled Release 114(1):1–14

    Article  CAS  Google Scholar 

  • Gianfrancesco A, Vuataz G, Mesnier X, Meunier V (2012) New methods to assess water diffusion in amorphous matrices during storage and drying. Food Chem 132(4):1664–1670

    Article  CAS  Google Scholar 

  • Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64:194–205

    Article  Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15(7–8):330–347

    Article  CAS  Google Scholar 

  • Gåserød O, Sannes A, Skjåk-Bræk G (1999) Microcapsules of alginate–chitosan. II. A study of capsule stability and permeability. Biomaterials 20:773–783

    Article  Google Scholar 

  • Gåserød O, Smidsrød O, Skjåk-Bræk G (1998) Microcapsules of alginate-chitosan–I: a quantitative study of the interaction between alginate and chitosan. Biomaterials 19:1815–1825

    Article  Google Scholar 

  • Habig-McHugh T, Avena-Bustillos R, Krochta JM (1993) Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. J Food Sci 58(4):899–903

    Article  Google Scholar 

  • Hambleton A, Perpiñan-Saiz N, Fabra MJ, Voilley A, Debeaufort F (2012) The Schroeder paradox or how the state of water affects the moisture transfer through edible films. Food Chem 132(4):1671–1678

    Article  CAS  Google Scholar 

  • Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT (2002) Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol 19:35–45

    Article  CAS  Google Scholar 

  • Henning S, Leick S, Kott M, Rehage H, Suter D (2012) Sealing liquid-filled pectinate capsules with a shellac coating. J Microencapsul 29(2):147–155

    Article  CAS  Google Scholar 

  • Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  • Hogan SA, O’Riordan ED, O’Sullivan M (2003) Microencapsulation and oxidative stability of spray-dried fish oil emulsions. J Microencapsul 20(5):675–688

    Article  CAS  Google Scholar 

  • Jackson LS, Lee K (1991) Microencapsulation and the food industry. Lebensmittel-Wissenschaft und Technolgie 24:289–297

    CAS  Google Scholar 

  • Jacobsen C (1999) Sensory impact of lipid oxidation in complex food systems. Fett/Lipid 101:484–492

    Google Scholar 

  • James B (2009) Advances in “wet” electron microscopy techniques and their application to the study of food structure. Trends Food Sci Technol 20(3–4):114–124

    Article  CAS  Google Scholar 

  • Jeleń HH, Majcher M, Dziadas M (2012) Microextraction techniques in the analysis of food flavor compounds: a review. Anal Chim Acta 738:13–26

    Article  CAS  Google Scholar 

  • Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intestinal Microbiol 3:39–48

    CAS  Google Scholar 

  • Karewicz A, Zasada K, Szczubiałka K, Zapotoczny S, Lach R, Nowakowska M (2010) “Smart” alginate-hydroxypropylcellulose microbeads for controlled release of heparin. Int J Pharm 385(1–2):163–169

    Article  CAS  Google Scholar 

  • Kilburn D, Claude J, Schweizer T, Alam A, Ubbink J (2005) Carbohydrate polymers in amorphous states: an integrated thermodynamic and nanostructural investigation. Biomacromolecules 6:864–879

    Article  CAS  Google Scholar 

  • Kilcast D, Subramaniam P (2000) The stability and shelf-life of food. Woodhead Publishing, Boca Raton

    Book  Google Scholar 

  • Kim W-T, Chung H, Shin I-S, Yam KL, Chung D (2008) Characterization of calcium alginate and chitosan-treated calcium alginate gel beads entrapping allyl isothiocyanate. Carbohydr Polym. Retrieved from http://www.sciencedirect.com/science/article/B6TFD-4P5NX4C-2/2/6280d9fc7ad3e18f6eddf71c4fd2b684

  • Kimura K, Nishimura H, Iwata I, Mizutani J (1983) Deterioration mechanism of lemon flavor. 2. Formation mechanism of off-odor. J Agric Food Chem 31(2):801–804

    Article  CAS  Google Scholar 

  • King CJ (1995) Retention of volatile compounds revisited. Drying Technol 13(5–7):1221–1240

    Article  CAS  Google Scholar 

  • Kosaraju SL (2005) Colon targeted delivery systems: review of polysaccharides for encapsulation and delivery. Crit Rev Food Sci Nutr 45(4):251–258

    Article  CAS  Google Scholar 

  • Koyama K, Seki M (2004) Evaluation of mass-transfer characteristics in alginate-membrane liquid-core capsules prepared using polyethylene glycol. J Biosci Bioeng 98(2):114–121

    Article  CAS  Google Scholar 

  • Kuang SS, Oliveira JC, Crean AM (2010) Microencapsulation as a tool for incorporating bioactive ingredients into food. Crit Rev Food Sci Nutr 50(10):951–968

    Article  CAS  Google Scholar 

  • Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6):511–521

    Article  CAS  Google Scholar 

  • Lee DW, Hwang SJ, Park JB, Park HJ (2003) Preparation and release characteristics of polymer-coated and blended alginate microspheres. J Microencapsul 20(2):179–192

    Article  CAS  Google Scholar 

  • Leick S, Kemper A, Rehage H (2011a) Alginate/poly-l-lysine capsules: mechanical properties and drug release characteristics. Soft Matter 7(14):6684

    Article  CAS  Google Scholar 

  • Leick S, Kott M, Degen P, Henning S, Päsler T, Suter D, Rehage H (2011b) Mechanical properties of liquid-filled shellac composite capsules. Phys Chem Chem Phys 13(7):2765–2773

    Article  CAS  Google Scholar 

  • Lesmes U, Cohen SH, Shener Y, Shimoni E (2009) Effects of long chain fatty acid unsaturation on the structure and controlled release properties of amylose complexes. Food Hydrocolloids 23(3):667–675. Retrieved from http://www.sciencedirect.com/science/article/B6VP9-4SK6310-6/2/b152813de05e1cc4871a10ed6967c6f9

  • Li XY, Chen XG, Cha DS, Park HJ, Liu CS (2009) Microencapsulation of a probiotic bacteria with alginate-gelatin and its properties. J Microencapsul 26(4):315–324

    Article  CAS  Google Scholar 

  • Liu P, Krishnan TR (1999) Alginate-pectin-poly-l-lysine particulate as a potential controlled release formulation. J Pharm Pharmacol 51(2):141–149

    Article  CAS  Google Scholar 

  • Lorén N, Langton M, Hermansson A-M (2007) Confocal fluorescence microscopy (CLSM) for food structure characterisation. In McClements DJ (ed) Understanding and controlling the microstructure of complex foods. CRC Press, Boca Raton, pp 232–260

    Google Scholar 

  • López-Córdoba A, Deladino L, Martino M (2014) Release of yerba mate antioxidants from corn starch-alginate capsules as affected by structure. Carbohydr Polym 99:150–157

    Article  CAS  Google Scholar 

  • Mackie A (2012) Interaction of food ingredient and nutraceutical delivery systems with the human gastrointestinal tract. In: Garti N, McClements DJ (eds) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing, Oxford, pp 49–70

    Chapter  Google Scholar 

  • Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and controlled release—a review. Int J Food Sci Technol 41:1–21

    Article  CAS  Google Scholar 

  • Mahou R, Wandrey C (2010) Alginate–poly(ethylene glycol) hybrid microspheres with adjustable physical properties. Macromolecules 43(3):1371–1378

    Article  CAS  Google Scholar 

  • Maiani G, Castón MJP, Catasta G, Toti E, Cambrodón IG, Bysted A, Granado-Lorencio F et al (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53(2):S194–S218

    Article  Google Scholar 

  • Marques MRC, Loebenberg R, Almukainzi M (2011) Simulated biological fluids with possible application on dissolution testing. Dissolution Technol 18:15–28

    Article  CAS  Google Scholar 

  • Martinsen A, Skjåk-Braek G, Smidsrød O (1989) Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 33(1):79–89

    Article  CAS  Google Scholar 

  • Martinsen A, Skjåk-Bræk G, Smidsrød O (1991) Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates. Carbohydr Polym 15:171–193

    Article  CAS  Google Scholar 

  • Meares P (1954) The diffusion of gases through polyvinyl acetate. J Am Chem Soc 76:3415–3422

    Article  CAS  Google Scholar 

  • Morris VJ (2007) Atomic force microscopy (AFM) techniques for characterising food structure. In: McClements DJ (ed) Understanding and controlling the microstructure of complex foods. CRC Press, Boca Raton, pp 209–231

    Chapter  Google Scholar 

  • Murano E (1998) Use of natural polysaccharides in the microencapsulation techniques. J Appl Ichthyol 14(3–4):245–249

    Article  CAS  Google Scholar 

  • Murata Y, Nakada K, Miyamoto E (1993) Influence of erosion of calcium-induced alginate gel matrix on the release of brilliant blue. J Controlled Release 23(1):21–26

    Article  CAS  Google Scholar 

  • Nguyen H, Campi EM, Roy Jackson W, Patti AF (2009) Effect of oxidative deterioration on flavour and aroma components of lemon oil. Food Chem 112(2):388–393

    Article  CAS  Google Scholar 

  • Onwulata CI (2012) Encapsulation of new active ingredients. Ann Rev Food Sci Technol 3:183–202

    Article  CAS  Google Scholar 

  • Prüße U, Dalluhn J, Breford J, Vorlop K-D (2000) Herstellung sphärischer Partikel mit dem Strahlschneider‐Verfahren. Chemie Ingenieur 72:852–858

    Google Scholar 

  • Qussi B, Suess W (2005) Investigation of the effect of various shellac coating compositions containing different water-soluble polymers on In vitro drug release. Drug Dev Ind Pharm 31(1):99–108

    Article  CAS  Google Scholar 

  • Reineccius G (2010) Flavor deterioration during food storage. In: Skibsted LH, Risbo J, Andersen ML (eds) Chemical deterioration and physical instability of food and beverages. Woodhead Publishing, Oxford, pp 95–112

    Google Scholar 

  • Rhim J-W, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433

    Article  CAS  Google Scholar 

  • Ridgway K, Lalljie S, Smith R (2010) Analysis of food taints and off-flavours: a review. Food Addit Contam A Chem Anal Control Exposure Risk Assess 27:146–168

    Article  CAS  Google Scholar 

  • Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430

    Google Scholar 

  • Roopa BS, Bhattacharya S (2008) Alginate gels: I. Characterization of textural attributes. J Food Eng 85(1):123–131

    Article  CAS  Google Scholar 

  • Ross CF (2009) Sensory science at the human–machine interface. Trends Food Sci Technol 20(2):63–72

    Article  CAS  Google Scholar 

  • Roos YH (2010) Glass transition temperature and its relevance in food processing. Ann Rev Food Sci Technol 1:469–496

    Article  CAS  Google Scholar 

  • Rulkens WH, Thijssen HAC (1972) The retention of organic volatiles in spray-drying aqueous carbohydrate solutions. J Food Technol 7:95–105

    Article  CAS  Google Scholar 

  • Sagalowicz L, Leser ME (2010) Delivery systems for liquid food products. Curr Opin Colloid Interface Sci 15:61–72

    Google Scholar 

  • Sandoval-Castilla O, Lobato-Calleros C, García-Galindo HS, Alvarez-Ramírez J, Vernon-Carter EJ (2010) Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Res Int 43(1):111–117

    Article  CAS  Google Scholar 

  • Saravanan M, Rao KP (2010) Pectin–gelatin and alginate–gelatin complex coacervation for controlled drug delivery: influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohydr Polym 80(3):808–816

    Article  CAS  Google Scholar 

  • Schieberle P, Grosch W (1988) Identification of potent flavor compounds formed in an aqueous lemon oil/citric acid emulsion. J Agric Food Chem 36(4):797–800

    Article  CAS  Google Scholar 

  • Schoonman A, Ubbink J, Bisperink C, Meste L, Karel M (2002) Solubility and diffusion of nitrogen in maltodextrin/protein tablets. Biotechnol Prog 18:139–154

    Article  CAS  Google Scholar 

  • Schrooyen PMM, Van der Meer R, De Kruif CG (2001) Microencapsulation: its application in nutrition. Proc Nutr Soc 60:475–479

    Article  CAS  Google Scholar 

  • Serfert Y, Lamprecht C, Tan C-P, Appel E, Selhuber-Unkel C, Gorb S, Schwarz K et al (2013) Characterization and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients by spray drying. J Food Eng 143:53–61

    Google Scholar 

  • Sezer A, Akbuga J (1999) Release characteristics of chitosan treated alginate beads: I. Sustained release of a macromolecular drug from chitosan treated alginate beads. J Microencapsul 16(2):195–203

    Article  CAS  Google Scholar 

  • Singh B, Sharma DK, Gupta A (2009) A study towards release dynamics of thiram fungicide from starch-alginate beads to control environmental and health hazards. J Hazard Mater 161(1):208–216

    Article  CAS  Google Scholar 

  • Smidsrød O, Skjåk-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8(3):71–78

    Article  Google Scholar 

  • Smidsrød O, Glover R, Whittington S (1973) The relative extension of alginates having different chemical composition. Carbohydr Res 27(1):107–118

    Article  Google Scholar 

  • Steele R (2000) Understanding and controlling the shelf-life of food. Woodhead Publishing, Boca Raton

    Google Scholar 

  • Tan LH, Chan LW, Heng PWS (2009) Alginate/starch composites as wall material to achieve microencapsulation with high oil loading. J Microencapsul 26(3):263–271

    Article  CAS  Google Scholar 

  • Tanaka H, Matsumura M, Veliky IA (1984) Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol Bioeng 26(1):53–58

    Article  CAS  Google Scholar 

  • Townrow S, Kilburn D, Alam A, Ubbink J (2007) Molecular packing in amorphous carbohydrate matrixes. J Phys Chem B 111:12643–12648

    Article  CAS  Google Scholar 

  • Townrow S, Roussenova M, Giardiello M-I, Alam A, Ubbink J (2010) Specific volume-hole volume correlations in amorphous carbohydrates: effect of temperature, molecular weight, and water content. J Phys ChemB 114:1568–1578

    Article  CAS  Google Scholar 

  • Tuorila H, Monteleone E (2009) Sensory food science in the changing society: opportunities, needs, and challenges. Trends Food Sci Technol 20(2):54–62

    Article  CAS  Google Scholar 

  • Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf 12(1):40–53

    Article  CAS  Google Scholar 

  • Ubbink J (2016) Structural and thermodynamic aspects of plasticization and antiplasticization in glassy encapsulation and biostabilization matrices. Adv Drug Deliv Rev 100(1):10–26

    Article  CAS  Google Scholar 

  • Ubbink J, Krüger J (2006) Physical approaches for the delivery of active ingredients in foods. Trends Food Sci Technol 17(5):244–254

    Article  CAS  Google Scholar 

  • Ueno T, Kiyohara S, Ho C-T, Masuda H (2006) Potent inhibitory effects of black tea theaflavins on off-odor formation from citral. J Agric Food Chem 54(8):3055–3061

    Article  CAS  Google Scholar 

  • Uhlemann J, Reiß I (2010) Product design and process engineering using the example of flavors. Chem Eng Technol 33(2):199–212

    Article  CAS  Google Scholar 

  • Van Boekel MAJS (2009) Kinetic modeling of reactions in food. CRC Press, Boca Raton

    Google Scholar 

  • Vega C (2006) Invited review: spray-dried dairy and dairy-like emulsions-compositional considerations. J Dairy Sci 89:383–401

    Google Scholar 

  • Venkateshwarlu G, Let MB, Meyer AS, Jacobsen C (2004) Chemical and olfactometric characterization of volatile flavor compounds in a fish oil enriched milk emulsion. J Agric Food Chem 52:311–317

    Google Scholar 

  • Wang S, Langrish T (2009) A review of process simulations and the use of additives in spray drying. Food Res Int 42(1):13–25

    Article  CAS  Google Scholar 

  • Wang W, Waterhouse GIN, Sun-Waterhouse D (2013) Co-extrusion encapsulation of canola oil with alginate: effect of quercetin addition to oil core and pectin addition to alginate shell on oil stability. Food Res Int 54(1):837–851

    Article  CAS  Google Scholar 

  • Whorton C, Reineccius GA (1995) Evaluation of the mechanisms associated with the release of encapsulated flavor materials from maltodextrin matrices. Encapsulation and controlled release of food ingredients. American Chemical Society, Washington

    Google Scholar 

  • Wichchukit S, Oztop MH, McCarthy MJ, McCarthy KL (2013) Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocolloids 33(1):66–73

    Article  CAS  Google Scholar 

  • Yampolskii Y, Shantarovich V (2006) Positron annihilation lifetime spectroscopy and other methods for free volume evaluation im polymers. In Yampolskii YP, Pinnau I, Freeman BD (eds) Materials science of membranes for gas and vapor separation. Wiley, New York, pp 191–210

    Google Scholar 

  • Yampolskii YP, Pinnau I, Freeman BD (eds) (2006) Materials science of membranes for gas and vapor separation. Wiley VCH, Weinheim

    Google Scholar 

  • Zabar S, Lesmes U, Katz I, Shimoni E, Bianco-Peled H (2010) Structural characterization of amylose-long chain fatty acid complexes produced via the acidification method. Food Hydrocolloids 24(4):347–357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Drusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Drusch, S., Wilde, R. (2017). Protective Performance of Delivery Systems in Production, Shelf Life and Digestion. In: Roos, Y., Livney, Y. (eds) Engineering Foods for Bioactives Stability and Delivery. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6595-3_11

Download citation

Publish with us

Policies and ethics