Skip to main content

Regression Models for Ordinal Categorical Time Series Data

  • Chapter
  • First Online:
Advances in Time Series Methods and Applications

Part of the book series: Fields Institute Communications ((FIC,volume 78))

  • 1453 Accesses

Abstract

Regression analysis for multinomial/categorical time series is not adequately discussed in the literature. Furthermore, when categories of a multinomial response at a given time are ordinal, the regression analysis for such ordinal categorical time series becomes more complex. In this paper, we first develop a lag 1 transitional logit probabilities based correlation model for the multinomial responses recorded over time. This model is referred to as a multinomial dynamic logits (MDL) model. To accommodate the ordinal nature of the responses we then compute the binary distributions for the cumulative transitional responses with cumulative logits as the binary probabilities. These binary distributions are next used to construct a pseudo likelihood function for inferences for the repeated ordinal multinomial data. More specifically, for the purpose of model fitting, the likelihood estimation is developed for the regression and dynamic dependence parameters involved in the MDL model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agresti, A. (1989). A survey of models for repeated ordered categorical response data. Statistics in Medicine, 8, 1209–1224.

    Article  Google Scholar 

  2. Agresti, A., & Natarajan, R. (2001). Modeling clustered ordered categorical data: A survey. International Statistical Review, 69, 345–371.

    Article  MATH  Google Scholar 

  3. Amemiya, T. (1985). Advanced econometrics. Cambridge, MA: Harvard University Press.

    Google Scholar 

  4. Fahrmeir, L., & Kaufmann, H. (1987). Regression models for non-stationary categorical time series. Journal of Time Series Analysis, 8, 147–160.

    Article  MathSciNet  MATH  Google Scholar 

  5. Fokianos, K., & Kedem, B. (1998). Prediction and classification of non-stationary categorical time series. Journal of Multivariate Analysis, 67, 277–296.

    Article  MathSciNet  MATH  Google Scholar 

  6. Fokianos, K., & Kedem, B. (2003). Regression theory for categorical time series. Statistical Science, 18, 357–376.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fokianos, K., & Kedem, B. (2004). Partial likelihood inference for time series following generalized linear models. Journal of Time Series Analysis, 25, 173–197.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kaufmann, H. (1987). Regression models for nonstationary categorical time series: Asymptotic estimation theory. Annals of Statistics, 15, 79–98.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lipsitz, S. R., Kim, K., & Zhao, L. (1994). Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine, 13, 1149–1163.

    Article  Google Scholar 

  10. Loredo-Osti, J. C., & Sutradhar, B. C. (2012). Estimation of regression and dynamic dependence parameters for non-stationary multinomial time series. Journal of Time Series Analysis, 33, 458–467.

    Article  MathSciNet  MATH  Google Scholar 

  11. McCullagh, P. (1983). Quasilikelihood functions. Annals of Statistics, 11, 59–67.

    Article  MathSciNet  MATH  Google Scholar 

  12. Rao, C. R. (1973). Linear statistical inference and its applications. New York, NY: Wiley.

    Book  MATH  Google Scholar 

  13. Sutradhar, B. C. (2011). Dynamic mixed models for familial longitudinal data. New York, NY: Springer.

    Book  MATH  Google Scholar 

  14. Sutradhar, B. C. (2014). Longitudinal categorical data analysis. New York, NY: Springer.

    Book  MATH  Google Scholar 

  15. Sutradhar, B. C., & Das, K. (1999). On the efficiency of regression estimators in generalized linear models for longitudinal data. Biometrika, 86, 459–465.

    Article  MathSciNet  MATH  Google Scholar 

  16. Tagore, V., & Sutradhar, B. C. (2009). Conditional inference in linear versus nonlinear models for binary time series. Journal of Statistical Computation and Simulation, 79, 881–897.

    Article  MathSciNet  MATH  Google Scholar 

  17. Tong, H. (1990). Nonlinear time series: A dynamical system approach. Oxford statistical science series (Vol. 6). New York, NY: Oxford University Press (1990)

    Google Scholar 

  18. Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss–Newton method. Biometrika, 61, 439–447.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Bhagawan Sri Sathya Sai Baba for His love and blessings to carry out this research in Sri Sathya Institute of Higher Learning. The authors thank the editorial committee for the invitation to participate in preparing this Festschrift honoring Professor Ian McLeod. It has brought back many pleasant memories of Western in early 80’s experienced by the first author during his PhD study. We have prepared this small contribution as a token of our love and respect to Professor Ian McLeod for his long and sustained contributions to the statistics community through teaching and research in time series analysis, among other areas. The authors thank two referees for their comments and suggestions on the earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajendra C. Sutradhar .

Editor information

Editors and Affiliations

Appendix

Appendix

Derivation for \(\frac{\partial F_{(1)j}}{\partial \beta }:\)

Recall from Sect. 2.1 that \(F_{(1)j}=\sum ^j_{c=1}\pi _{(1)c},\) where \(\pi _{(1)c}\) is given by (2). It then follows that

$$\begin{aligned} \frac{\partial F_{(1)j}}{\partial \beta } =\frac{\partial }{\partial \beta }\sum ^j_{c=1}\pi _{(1)c} = \frac{\partial }{\partial \beta }\sum ^j_{c=1}\frac{\exp \left( x'_1\beta _{c}\right) }{1+\sum ^{J-1}_{g=1}\exp \left( x'_1\beta _{g}\right) }. \end{aligned}$$
(45)

Now because

$$\begin{aligned} \frac{\partial \pi _{(1)c}}{\partial \beta _c} = \pi _{(1)c}[1- \pi _{(1)c}]x_1,\;\text{ and }\; \frac{\partial \pi _{(1)c}}{\partial \beta _k} =- [\pi _{(1)c}\pi _{(1)k}]x_{1}, \end{aligned}$$
(46)

it follows that

$$\begin{aligned} \frac{\partial \pi _{(1)c}}{\partial \beta }= & {} \begin{pmatrix}-\pi _{(1)1}\pi _{(1)c} \\ \vdots \\ \pi _{(1)c}[1-\pi _{(1)c}] \\ \vdots \\ -\pi _{(1)(J-1)}\pi _{(1)c}\\ \end{pmatrix} \otimes x_{1} : (J-1)(p+1) \times 1 \nonumber \\= & {} \left[ \pi _{(1)c}(\delta _{(1)c}-\pi _{(1)})\right] \otimes x_{1}. \end{aligned}$$
(47)

The formula for \(\frac{\partial F_{(1)j}}{\partial \beta }\) in (25) follows by using (47) and (45).

Derivation for \(\frac{\partial \tilde{\lambda }^{(2)}_{gj}(g^*)}{\partial \beta }:\)

By using the formula for \(\tilde{\lambda }^{(2)}_{gj}(g^*)\) from (13) we write

$$\begin{aligned} \frac{\partial \tilde{\lambda }^{(2)}_{gj}(g^*)}{\partial \beta } =\frac{\partial }{\partial \beta }\left\{ \begin{array}{ll} \frac{1}{g}\sum ^g_{c_1=1}\sum ^J_{c_2=j+1}\lambda ^{(c_2)}_{t|t-1}(c_1) &{}\quad \text{ for }\; g^*=1 \\ \frac{1}{J-g}\sum ^J_{c_1=g+1}\sum ^J_{c_2=j+1}\lambda ^{(c_2)}_{t|t-1}(c_1) &{}\quad \text{ for }\; g^*=2, \end{array} \right. \end{aligned}$$
(48)

where \(\lambda ^{(c_2)}_{t|t-1}(c_1)\) is given in (5), that is,

$$\begin{aligned} \eta ^{(c_2)}_{t|t-1}(c_1)=\left\{ \begin{array}{ll}\frac{{\exp \,\left[ x^{'}_{t}\beta _{c_2} +\gamma '_{c_2}\delta _{(t-1)c_1}\right] }}{{1\,+\,\sum ^{J-1}_{v=1}\exp \,\left[ x^{'}_{t}\beta _v+\gamma '_v \delta _{(t-1)c_1}\right] }}, &{}\quad \text{ for }\;c_2=1,\ldots ,J-1 \\ \frac{1}{{1\,+\,\sum ^{J-1}_{v=1}\exp \,\left[ x^{'}_{t}\beta _v +\gamma '_v\delta _{(t-1)c_1}\right] }}, &{}\quad \text{ for }\;c_2=J.\\ \end{array}\right. \end{aligned}$$
(49)

Now, for \(t=2,\ldots ,T,\) it follows from (49) that

$$\begin{aligned} \frac{\partial \eta ^{(c_2)}_{t|t-1}(c_1)}{\partial \beta _{c_2}}= & {} \eta ^{(c_2)}_{t|t-1}(c_1)\left[ 1- \eta ^{(c_2)}_{t|t-1}(c_1)\right] x_{t} \nonumber \\ \frac{\partial \eta ^{(c_2)}_{t|t-1}(c_1)}{\partial \beta _k}= & {} - \left[ \eta ^{(c_2)}_{t|t-1}(c_1)\eta ^{(k)}_{t|t-1}(c_1)\right] x_{t}, \end{aligned}$$
(50)

yielding

$$\begin{aligned} \frac{\partial \eta ^{(c_2)}_{t|t-1}(c_1)}{\partial \beta }= & {} \begin{pmatrix}-\eta ^{(1)}_{t|t-1}(c_1)\eta ^{(c_2)}_{t|t-1}(c_1) \\ \vdots \\ \eta ^{(c_2)}_{t|t-1}(c_1)[1-\eta ^{(c_2)}_{t|t-1}(c_1)] \\ \vdots \\ -\eta ^{(J-1)}_{t|t-1}(c_1)\eta ^{(c_2)}_{t|t-1}(c_1)\\ \end{pmatrix} \otimes x_{t} : (J-1)(p+1) \times 1 \nonumber \\= & {} \left[ \eta ^{(c_2)}_{t|t-1}(c_1)(\delta _{(t-1)c_2}-\eta _{t|t-1}(c_1))\right] \otimes x_{t}. \end{aligned}$$
(51)

The formula for the derivative in (26) follows now by applying (50) into (48).

Derivation for \(\frac{\partial \tilde{\lambda }^{(2)}_{gj}(g^*)}{\partial \gamma }:\)

By using the formula for \(\tilde{\lambda }^{(2)}_{gj}(g^*)\) from (13) we write

$$\begin{aligned} \frac{\partial \tilde{\lambda }^{(2)}_{gj}(g^*)}{\partial \gamma } =\frac{\partial }{\partial \gamma }\left\{ \begin{array}{ll} \frac{1}{g}\sum ^g_{c_1=1}\sum ^J_{c_2=j+1}\lambda ^{(c_2)}_{t|t-1}(c_1) &{} \quad \text{ for }\; g^*=1 \\ \frac{1}{J-g}\sum ^J_{c_1=g+1}\sum ^J_{c_2=j+1}\lambda ^{(c_2)}_{t|t-1}(c_1) &{}\quad \text{ for }\; g^*=2, \end{array} \right. \end{aligned}$$
(52)

where \(\lambda ^{(c_2)}_{t|t-1}(c_1)\) is given in (5) [see also (49)].

Next, for \(t=2,\ldots ,T,\) it follows from (49) that

$$\begin{aligned} \frac{\partial \eta ^{(c_2)}_{t|t-1}(c_1)}{\partial \gamma _{c_2}}= & {} \eta ^{(c_2)}_{t|t-1}(c_1)\left[ 1- \eta ^{(c_2)}_{t|t-1}(c_1)\right] \delta _{(t-1)c_1} \nonumber \\ \frac{\partial \eta ^{(c_2)}_{t|t-1}(c_1)}{\partial \gamma _k}= & {} - \left[ \eta ^{(c_2)}_{t|t-1}(c_1)\eta ^{(k)}_{t|t-1}(c_1)\right] \delta _{(t-1)c_1}, \end{aligned}$$
(53)

where

$$\delta _{(t-1)c_1} = \left\{ \begin{array}{ll} [01'_{c_1-1},1,01'_{J-1-c_1}]' &{}\quad \text{ for }\;c_1=1,\ldots ,J-1\\ 01_{J-1} &{}\quad \text{ for }\; c_1=J. \end{array} \right. $$

These derivatives in (53) may further be re-expressed as

$$\begin{aligned} \frac{\partial \eta ^{(c_2)}_{t|t-1}(c_1)}{\partial \gamma }= & {} \begin{pmatrix}-\eta ^{(1)}_{t|t-1}(c_1)\eta ^{(c_2)}_{t|t-1}(c_1) \\ \vdots \\ \eta ^{(c_2)}_{t|t-1}(c_1)[1-\eta ^{(c_2)}_{t|t-1}(c_1)] \\ \vdots \\ -\eta ^{(J-1)}_{t|t-1}(c_1)\eta ^{(c_2)}_{t|t-1}(c_1)\\ \end{pmatrix} \otimes \delta _{(t-1)c_1} : (J-1)^2 \times 1 \nonumber \\= & {} \left[ \eta ^{(c_2)}_{t|t-1}(c_1)(\delta _{(t-1)c_2}-\eta _{t|t-1}(c_1))\right] \otimes \delta _{(t-1)c_1}. \end{aligned}$$
(54)

The formula for the derivative in (36) now follows by applying (53) into (52).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sutradhar, B.C., Prabhakar Rao, R. (2016). Regression Models for Ordinal Categorical Time Series Data. In: Li, W., Stanford, D., Yu, H. (eds) Advances in Time Series Methods and Applications . Fields Institute Communications, vol 78. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6568-7_8

Download citation

Publish with us

Policies and ethics