Skip to main content

Isolation of Microtubules and Microtubule-Associated Proteins

  • Protocol
  • First Online:
Isolation of Plant Organelles and Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1511))

  • 3333 Accesses

Abstract

Microtubules are essential cellular structures in plant cells. They are polymerized from tubulin dimers and are regulated by microtubule-associated proteins (MAPs). Here, we describe a protocol for purifying tubulin dimers and MAPs from plant cells. The protocol involves preparing vacuole-free mini-protoplasts, a high quality cytoplasmic extract, cycles of microtubule polymerization and depolymerization to increase tubulin and MAP concentration, separation of tubulin and MAPs by column chromatography. We also present tubulin purification methods for biochemical assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamada T (2014) Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cell Mol Biol 312:1–52

    Article  CAS  PubMed  Google Scholar 

  2. Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A 70:765–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vallee RB (1986) Purification of brain microtubules and microtubule-associated protein-1 using taxol. Methods Enzymol 134:104–115

    Article  CAS  PubMed  Google Scholar 

  4. Sonobe S (1990) Cytochalasin-B enhances cytokinetic cleavage in miniprotoplasts isolated from cultured tobacco cells. Protoplasma 155:239–242

    Article  Google Scholar 

  5. Jiang CJ, Sonobe S, Shibaoka H (1992) Assembly of microtubules in a cytoplasmic extract of tobacco by-2 miniprotoplasts in the absence of microtubule-stabilizing agents. Plant Cell Physiol 33:497–501

    CAS  Google Scholar 

  6. Komoda K, Naito S, Ishikawa M (2004) Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts. Proc Natl Acad Sci U S A 101:1863–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murota K, Hagiwara-Komoda Y, Komoda K et al (2011) Arabidopsis cell-free extract, ACE, a new in vitro translation system derived from Arabidopsis callus cultures. Plant Cell Physiol 52:1443, Plant Cell Physiol. 53:602-02

    Article  CAS  PubMed  Google Scholar 

  8. Hamada T (2014) Lessons from in vitro reconstitution analyses of plant microtubule-associated proteins. Front Plant Sci 5:409

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hamada T, Igarashi H, Itoh TJ et al (2004) Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/MOR1 family. Plant Cell Physiol 45:1233–1242

    Article  CAS  PubMed  Google Scholar 

  10. Hamada T, Igarashi H, Taguchi R et al (2009) The putative RNA-processing protein, THO2, is a microtubule-associated protein in tobacco. Plant Cell Physiol 50:801–811

    Article  CAS  PubMed  Google Scholar 

  11. Hamada T, Igarashi H, Yao M et al (2006) Purification and characterization of plant dynamin from tobacco BY-2 cells. Plant Cell Physiol 47:1175–1181

    Article  CAS  PubMed  Google Scholar 

  12. Hamada T, Itoh TJ, Hashimoto T et al (2009) GTP is required for the microtubule catastrophe-inducing activity of MAP200, a tobacco homolog of XMAP215. Plant Physiol 151:1823–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Igarashi H, Orii H, Mori H et al (2000) Isolation of a novel 190 kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol 41:920–931

    Article  CAS  PubMed  Google Scholar 

  14. Jiang CJ, Sonobe S (1993) Identification and preliminary characterization of a 65-Kda higher-plant microtubule-associated protein. J Cell Sci 105:891–901

    CAS  Google Scholar 

  15. Murata T, Sonobe S, Baskin TI et al (2005) Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nat Cell Biol 7:961–8

    Article  CAS  PubMed  Google Scholar 

  16. Shoji T, Narita NN, Hayashi K et al (2004) Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis. Plant Physiol 136:3933–3944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yasuhara H, Muraoka M, Shogaki H et al (2002) TMBP200, a microtubule bundling polypeptide isolated from telophase tobacco BY-2 cells is a MOR1 homologue. Plant Cell Physiol 43:595–603

    Article  CAS  PubMed  Google Scholar 

  18. Fujita S, Pytela J, Hotta T et al (2013) An atypical tubulin kinase mediates stress-induced microtubule depolymerization in Arabidopsis. Curr Biol 23:1969, Current Biology 23:2196-96

    Article  CAS  PubMed  Google Scholar 

  19. Motose H, Hamada T, Yoshimoto K et al (2011) NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana. Plant J 67:993–1005

    Article  CAS  PubMed  Google Scholar 

  20. Sasabe M, Soyano T, Takahashi Y et al (2006) Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev 20:1004–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamada T, Nagasaki-Takeuchi N, Kato T et al (2013) Purification and characterization of novel microtubule-associated proteins from Arabidopsis cell suspension cultures. Plant Physiol 163:1804–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagata T, Okada K, Takebe I et al (1981) Delivery of tobacco mosaic-virus RNA into plant-protoplasts mediated by reverse-phase evaporation vesicles (liposomes). Mol Gen Genet 184:161–165

    CAS  Google Scholar 

  23. Sonobe S (1996) Studies on the plant cytoskeleton using miniprotoplasts of tobacco BY-2 cells. J Plant Res 109:437–448

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Tobias Baskin (University of Massachusetts, Amherst) for helpful discussion and critical editing of the manuscript. We also thank Prof. Bo Liu (University of California, Davis) for helpful comments to the manuscript. This work was supported by MEXT/JSPS KAKENHI Grant Number 15H05598 and 16H01229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Hamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hamada, T., Sonobe, S. (2017). Isolation of Microtubules and Microtubule-Associated Proteins. In: Taylor, N., Millar, A. (eds) Isolation of Plant Organelles and Structures. Methods in Molecular Biology, vol 1511. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6533-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6533-5_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6531-1

  • Online ISBN: 978-1-4939-6533-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics