Skip to main content

The Isolation of Plant Organelles and Structures in the Post-genomic Era

  • Protocol
  • First Online:
Isolation of Plant Organelles and Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1511))

Abstract

In this chapter, we provide an overview of the techniques and approaches used in the isolation of plant organelles and structures. This overview shows there is a great diversity of methods currently used for the initial physical disruption of plant tissue before the downstream isolation of a target cellular component. These include hand grinding, high-speed mechanical disruption, and enzymatic digestion of cell walls by a variety of methods. Coupled to these disruption techniques is a wide array of additives included as ingredients in extraction solutions to minimize chemical or physical damage that may occur to target components. These additives are collated into a table outlining their function. We also provide an introduction to some of the history of common approaches used for the isolation plant organelles and structures and a synopsis of the methods used by researchers for assessment of the purity of their isolated structures. This chapter therefore provides an introduction to the following chapters that document the methodology for the isolation of individual plant organelles or structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwann T (1847) Microscopical researches into the accordance in the structure and growth of animals and plants. Sydenham Society, London [S.l.]

    Google Scholar 

  2. Andrews FM (1903) Die Wirkung der Zentrifugalkraft auf Pfianzen. Jahrb Wiss Bot 38:1–40

    Google Scholar 

  3. Mottier DM (1899) The effect of centrifugal force upon the cell. Ann Bot 13:325–363

    Google Scholar 

  4. Hogeboom GH, Schneider WC, Striebich MJ (1953) Localization and integration of cellular function. Cancer Res 13:617–632

    CAS  PubMed  Google Scholar 

  5. Morgenthaler JJ, Marsden MP, Price CA (1975) Factors affecting the separation of photosynthetically competent chloroplasts in gradients of silica sols. Arch Biochem Biophys 168:289–301

    Article  CAS  PubMed  Google Scholar 

  6. Jackson C, Dench JE, Hall DO et al (1979) Separation of mitochondria from contaminating subcellular structures utilizing silica sol gradient centrifugation. Plant Physiol 64:150–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luthe DS, Quatrano RS (1980) Transcription in isolated wheat nuclei: I. Isolation of nuclei and elimination of endogenous ribonuclease activity. Plant Physiol 65:305–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heidrich HG, Hannig K (1989) Separation of cell populations by free-flow electrophoresis. Methods Enzymol 171:513–531

    Article  CAS  PubMed  Google Scholar 

  9. Schmid SL, Fuchs R, Male P et al (1988) Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes. Cell 52:73–83

    Article  CAS  PubMed  Google Scholar 

  10. Marsh M (1989) Endosome and lysosome purification by free-flow electrophoresis. Methods Cell Biol 31:319–334

    Article  CAS  PubMed  Google Scholar 

  11. Volkl A, Mohr H, Weber G et al (1997) Isolation of rat hepatic peroxisomes by means of immune free flow electrophoresis. Electrophoresis 18:774–780

    Article  CAS  PubMed  Google Scholar 

  12. Morre DJ, Nowack DD, Paulik M et al (1989) Transitional endoplasmic-reticulum membranes and vesicles isolated from animals and plants - homologous and heterologous cell-free membrane transfer to Golgi-apparatus. Protoplasma 153:1–13

    Article  Google Scholar 

  13. Bardy N, Carrasco A, Galaud JP et al (1998) Free-flow electrophoresis for fractionation of Arabidopsis thaliana membranes. Electrophoresis 19:1145–1153

    Article  CAS  PubMed  Google Scholar 

  14. Eubel H, Lee CP, Kuo J et al (2007) Free-flow electrophoresis for purification of plant mitochondria by surface charge. Plant J 52:583–594

    Article  CAS  PubMed  Google Scholar 

  15. Parsons HT, Christiansen K, Knierim B et al (2012) Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiol 159:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Millar AH, Knorpp C, Leaver CJ et al (1998) Plant mitochondrial pyruvate dehydrogenase complex: purification and identification of catalytic components in potato. Biochem J 334(Pt 3):571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murray PF, Giordano CV, Passeron S et al (1997) Purification and characterization of the 20S proteasome from wheat leaves. Plant Sci 125:127–136

    Article  CAS  Google Scholar 

  18. Ozaki M, Fujinami K, Tanaka K et al (1992) Purification and initial characterization of the proteasome from the higher plant Spinacia oleracea. J Biol Chem 267:21678–21684

    CAS  PubMed  Google Scholar 

  19. Schliephacke M, Kremp A, Schmid HP et al (1991) Prosomes (proteasomes) of higher plants. Eur J Cell Biol 55:114–121

    CAS  PubMed  Google Scholar 

  20. Book AJ, Gladman NP, Lee SS et al (2010) Affinity purification of the Arabidopsis 26 S proteasome reveals a diverse array of plant proteolytic complexes. J Biol Chem 285:25554–25569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reynoso MA, Juntawong P, Lancia M et al (2015) Translating ribosome affinity purification (TRAP) followed by RNA sequencing technology (TRAP-SEQ) for quantitative assessment of plant translatomes. Methods Mol Biol 1284:185–207

    Google Scholar 

  22. Taylor NL, Millar AH (2015) Plant mitochondrial proteomics. Methods Mol Biol 1305:83–106

    Article  CAS  PubMed  Google Scholar 

  23. Taylor NL, Fenske R, Castleden I et al (2014) Selected reaction monitoring to determine protein abundance in Arabidopsis using the Arabidopsis proteotypic predictor. Plant Physiol 164:525–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the ARC Centre of Excellence for Plant Energy Biology (CE140100008) and AHM (FT110100242) and NLT (FT13010123) as ARC Future Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas L. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Millar, A.H., Taylor, N.L. (2017). The Isolation of Plant Organelles and Structures in the Post-genomic Era. In: Taylor, N., Millar, A. (eds) Isolation of Plant Organelles and Structures. Methods in Molecular Biology, vol 1511. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6533-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6533-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6531-1

  • Online ISBN: 978-1-4939-6533-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics