Skip to main content

Random Vibration and Mechanical Shock

  • Living reference work entry
  • First Online:
Handbook of Experimental Structural Dynamics

Abstract

All physical systems are exposed to structural dynamic environments, including random vibration or mechanical shock, or both. These environments can cause structural or component failure. The capability to analyze dynamic response is critical not only for purposes of response prediction and design, but also for specification of random vibration and shock tests. This chapter develops the ideas and the mathematics underlying the structural dynamics of linear single-degree-of-freedom and multiple-degree-of-freedom structures, random processes, random vibration, mechanical shock, random vibration testing, and mechanical shock testing. Examples are provided and many recommendations are given for the performance of random vibration and shock tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

a :

Acceleration

A :

Amplitude, Fourier transform of acceleration

Bw :

Bandwidth

c :

Viscous damping coefficient

d :

Displacement

Db :

Decibels

D f :

RMS duration of a function of frequency

D t :

RMS duration of a function of time

e :

Estimation error

E :

Energy of a shock

E [∙]:

Expectation

f :

Frequency (in Hertz), a function

\( \hat{g} \) :

One-sided spectral density estimator

G :

One-sided spectral density

h :

Impulse response function

H :

Frequency response function

k :

Stiffness coefficient

m :

Mass

m i :

A temporal moment

M :

Number of modes retained in modal analysis

N :

Number of averages used to form spectral density estimate

q :

Force

Q :

Fourier transform of q

RMS :

Root mean square

S :

Shock response spectrum

S r :

Sample rate

v :

Velocity

x :

Absolute displacement

X :

Fourier transform of x

y :

A function

Y :

Fourier transform of y

z :

A function

Z :

Fourier transform of z

{X(t)}:

Random process

x b :

Base excitation

z :

Relative displacement

γ :

Modal coordinates

γ 2 :

Coherence

Γ :

Fourier transform of γ

ζ :

Damping factor, A decay rate

θ :

Fourier transform of force

ξ :

Fourier transform of displacement

μ :

Mean

φ :

Matrix of mode shapes

ω :

Frequency (in radians/second)

ω n :

Natural frequency (in radians/second)

ω d :

Damped natural frequency (in radians/second)

References

  1. Murphy GM (2011) Ordinary differential equations and their solutions. Dover Publications, Mineola

    Google Scholar 

  2. Inman DJ (2000) Engineering vibration, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  3. James JF (2011) A student’s guide to Fourier transforms: with applications in physics and engineering, 3rd edn. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  4. Bendat JS, Piersol AG (2010) Random data, analysis and measurement procedures, fourth edition. Wiley, New York

    Book  Google Scholar 

  5. Abramowitz M, Stegun I (2014) Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards, Applied Mathematics series 55. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  6. Bathe K-J (1996) Finite element procedures. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  7. Wirsching PH, Paez TL, Ortiz K (1995) Random vibrations, theory and practice. Dover Publications, Mineola

    Google Scholar 

  8. Einstein A (1905) On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat. Annalen der Pyhsik 17:549. Also, reprinted in Einstein [9]

    Article  Google Scholar 

  9. Einstein A (1956) Investigations on the theory of the Brownian movement. Dover Publications, New York, Edited by R. Furth

    MATH  Google Scholar 

  10. Wiener N (1930) Generalized harmonic analysis. Acta Math 55:118

    Article  MathSciNet  Google Scholar 

  11. Crandall S (1958) Statistical properties of response to random vibration, Chapter 4. In: Crandall S (ed) Random vibration. Technology Press of MIT and Wiley, New York

    Google Scholar 

  12. Crandall S (ed) (1958) Random vibration. Technology Press of MIT and Wiley, New York

    Google Scholar 

  13. Piersol AG, Paez TL (2010) Harris’ shock and vibration handbook, 6th edn. McGraw-Hill, New York. (See Chapter 8)

    Google Scholar 

  14. Ang AH-S, Tang WH (2006) Probability concepts in engineering: emphasis on applications to civil and environmental engineering, 2nd edn. Wiley, New York

    Google Scholar 

  15. Favour JD, LeBrun JD, Young JP (1969) Transient waveform control of electrodynamic test equipment. In: Shock and vibration bulletin 40. Shock and Vibration Exchange, Arvonia

    Google Scholar 

  16. Yang RC (1970) Safeguard BDM system – development of a waveform synthesis technique, SAG-64. Ralph M. Parsons, New York

    Google Scholar 

  17. Smallwood DO (1975) Time history synthesis for shock testing on shakers. In: Seminar on understanding digital control and analysis in vibration test systems, Part II. A Publication of the S&V Information Center, Shock and Vibration Exchange, Arvonia, pp 23–42

    Google Scholar 

  18. Smallwood DO, Nord AR (1974) Matching shock spectra with sums of decaying sinusoids compensated for shaker velocity and displacement limitations. In: Shock and vibration bulletin 44, Part 3. Shock and Vibration Information Center, Naval Research Laboratory, Washington, DC, pp 43–56

    Google Scholar 

  19. Nelson DB, Prasthofer PH (1974) A case for damped oscillatory excitation as a natural pyrotechnic shock simulation. In: Shock and vibration bulletin 44, Part 3. Shock and Vibration Exchange, Arvonia, pp 57–71

    Google Scholar 

  20. Fisher DK, Posehn MR (1977) Digital control system for a multiple-actuator shaker. In: Shock and vibration bulletin 47, Part 3. Shock and Vibration Exchange, Arvonia, pp 79–96

    Google Scholar 

  21. Stearns SD (1975) Digital signal analysis. Hayden Book Company, Rochelle Park

    MATH  Google Scholar 

  22. Rabiner LR, Gold B (1975) Theory and application of digital signal processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Society for Experimental Mechanics

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Paez, T.L., Hunter, N.F., Smallwood, D.O. (2020). Random Vibration and Mechanical Shock. In: Allemang, R., Avitabile, P. (eds) Handbook of Experimental Structural Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6503-8_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6503-8_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6503-8

  • Online ISBN: 978-1-4939-6503-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics