Skip to main content

Experimental Modal Analysis Methods

Handbook of Experimental Structural Dynamics

Abstract

This chapter provides the basis and background of all experimental modal analysis (EMA) methods that have been developed over the last fifty years. In this context, modal parameters refer to complex valued modal frequencies, complex valued modal vectors and complex valued modal scaling. The chapter focusses on modal parameter estimation (MPE) methods that have been or are commercially available but includes many related MPE methods that have been developed and presented in research journals and articles as well. The methods are mostly based upon experimentally measured frequency response function (FRF) or impulse response function (IRF) data. MPE methods that are fundamentally single input, single output (SISO) methods finding one single mode are included through modern multiple input, multiple output (MIMO) methods that find all modal parameters for all modes simultaneously (in one or two passes). Discussion includes the theoretical background of all methods along with the kernel equations for each method. The mathematical development utilizes a central concept of matrix concept polynomials that provide the basis of the unified matrix polynomial approach (UMPA). Basic definitions and are included as concepts are developed and a complete set of historical references is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Leuridan J, Brown D, Allemang R (1985) Time domain parameter identification methods for linear modal analysis: a unifying approach, ASME paper number 85-DET-90

    Google Scholar 

  2. Allemang RJ, Brown D (1987) Volume III: modal parameter estimation, USAF report: AFWAL-TR-87-3069, Experimental modal analysis and dynamic component synthesis, no. 3, pp 130

    Google Scholar 

  3. Allemang R, Brown D, Fladung W (1994) Modal parameter estimation: a unified matrix polynomial approach. In: Proceedings, International Modal Analysis Conference (IMAC), pp 501–514

    Google Scholar 

  4. Allemang R, Brown D (1996) A unified matrix polynomial approach to modal identification, pp 379–390, Mar 1996

    Google Scholar 

  5. Allemang R, Brown D (1998) A unified matrix polynomial approach to modal identification. J Sound Vib 211(3):301–322

    Article  Google Scholar 

  6. Allemang R, Phillips A (2004) The unified matrix polynomial approach to understanding modal parameter estimation: an update. In: Proceedings, International Seminar on Modal Analysis (ISMA)

    Google Scholar 

  7. Spitznogle F (1971) Improvements in the complex exponential signal analysis computational algorithm, Report number U1-829401-5, Representation and analysis of sonar signals, vol 1, pp 37

    Google Scholar 

  8. Brown D, Allemang R, Zimmerman R, Mergeay M (1979) Parameter estimation techniques for modal analysis. SAE Trans 88:828–846. SAE paper number 790221

    Google Scholar 

  9. Vold H, Rocklin T (1982) The numerical implementation of a multi-input modal estimation algorithm for mini-computers. In: Proceedings, International Modal Analysis Conference (IMAC), pp 542–548

    Google Scholar 

  10. Vold H, Kundrat J, Rocklin T, Russell R (1982) A multi-input modal estimation algorithm for mini-computers. SAE Trans 91(1):815–821

    Google Scholar 

  11. Ibrahim S, Mikulcik E (1977) A method for the direct identification of vibration parameters from the free response. Shock Vib Bull 47:183–198

    Google Scholar 

  12. Pappa R (1982) Some statistical performance characteristics of the ITD modal identification algorithm, AIAA paper number 82-0768, p 19

    Google Scholar 

  13. Fukuzono K (1986) Investigation of multiple-reference Ibrahim time domain modal parameter estimation technique, M. S. thesis, p 220

    Google Scholar 

  14. Juang J, Pappa R (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. AIAA J Guid Control Dyn 8(4):620–627

    Article  Google Scholar 

  15. Juang J (1987) Mathematical correlation of modal parameter identification methods via system realization theory. J Anal Exp Modal Anal 2(1):1–18

    Google Scholar 

  16. Longman RW, Juang J-N (1989) Recursive form of the eigensystem realization algorithm for system identification. AIAA J Guid Control Dyn 12(5):647–652

    Article  MathSciNet  Google Scholar 

  17. Zhang L, Kanda H, Brown D, Allemang R (1985) A polyreference frequency domain method for modal parameter identification, ASME paper No. 85-DET-106, vol 8, pp 8+

    Google Scholar 

  18. Lembregts F, Leuridan J, Zhang L, Kanda H (1986) Multiple input modal analysis of frequency response functions based on direct parameter identification. In: Proceedings, International Modal Analysis Conference (IMAC)

    Google Scholar 

  19. Lembregts F (1988) Frequency domain identification techniques for experimental multiple input modal analysis, Doctoral dissertation, Katholieke University of Leuven, Belgium, vol 213

    Google Scholar 

  20. Lembregts F, Leuridan J, Van Brussel H (1989) Frequency domain direct parameter identification for modal analysis: state space formulation. Mech Syst Signal Process (MSSP) 4(1): 65–76

    Article  Google Scholar 

  21. Coppolino R (1981) A simultaneous frequency domain technique for estimation of modal parameters from measured data, SAE paper No. 811046, vol 12

    Google Scholar 

  22. Craig R, Kurdila A, Kim HM (1990) State-space formulation of multi-shaker modal analysis. J Anal Exp Modal Anal 5(3):169–183

    Google Scholar 

  23. Leuridan J (1984) Some direct parameter model identification methods applicable for multiple input modal analysis, Doctoral dissertation, vol 384, pp 384+

    Google Scholar 

  24. Natke H (1988) Updating computational models in the frequency domain based on measured data: a survey. Probab Eng Mech 3(1):28–35

    Article  Google Scholar 

  25. Richardson M, Formenti D (1982) Parameter estimation from frequency response measurements using rational fraction polynomials. In: Proceedings, International Modal Analysis Conference (IMAC), pp 167–182

    Google Scholar 

  26. Shih C, Tsuei Y, Allemang R, Brown D (1988) A frequency domain global parameter estimation method for multiple reference frequency response measurements. Mech Syst Signal Process (MSSP) 2(4):349–365

    Article  Google Scholar 

  27. Shih C (1989) Investigation of numerical conditioning in the frequency domain modal parameter estimation methods, Doctoral dissertation, vol 127, pp 127+

    Google Scholar 

  28. Van der Auweraer H, Leuridan J (1987) Multiple input orthogonal polynomial parameter estimation. Mech Syst Signal Process (MSSP) 1(3):259–272

    Article  Google Scholar 

  29. Van der Auweraer H, Snoeys R, Leuridan JM (1986) A global frequency domain modal parameter estimation technique for mini-computers. ASME J Vib Acoust Stress Reliab Des 10

    Google Scholar 

  30. Vold H (1986) Orthogonal polynomials in the polyreference method. In: Proceedings, International Seminar on Modal Analysis (ISMA)

    Google Scholar 

  31. Vold H, Shih CY (1988) Numerical sensitivity of the characteristic polynomial. In: Proceedings, International Seminar on Modal Analysis (ISMA)

    Google Scholar 

  32. Vold H (1990) Numerically robust frequency domain modal parameter estimation. Sound Vib Mag (SVM) 24(1):38–40

    Google Scholar 

  33. Vold H (1990) Statistics of the characteristic polynomial in modal analysis. In: Proceedings, International Seminar on Modal Analysis (ISMA), pp 53–57

    Google Scholar 

  34. Vold H, Napolitano K, Hensley D, Richardson M (2008) Aliasing in modal parameter estimation, an historical look and new innovations. In: Proceedings, International Modal Analysis Conference (IMAC), vol 16, pp 12–17

    Google Scholar 

  35. Fladung W, Vold H (2016) An improved implementation of the orthogonal polynomial modal parameter estimation algorithm using the orthogonal complement. In: Proceedings, International Modal Analysis Conference (IMAC)

    Google Scholar 

  36. Fladung W, Vold H (2016) An orthogonal view of the polyreference least-squares complex frequency modal parameter estimation algorithm. In: Proceedings, International Modal Analysis Conference (IMAC)

    Google Scholar 

  37. Van der Auweraer H, Guillaume P, Verboven P, Vanlanduit S (2001) Application of a fast-stabilizing frequency domain parameter estimation method. ASME J Dyn Syst Meas Control 123(4):651–658

    Article  Google Scholar 

  38. Guillaume P, Verboven P, Vanlanduit S, Van der Auweraer H, Peeters B (2003) A polyreference implementation of the least-squares complex frequency domain estimator. In: Proceedings, International Modal Analysis Conference (IMAC), p 12

    Google Scholar 

  39. Verboven P, Guillaume P, Cauberghe B, Parloo E, Vanlanduit S (2003) Stabilization charts and uncertainty bounds for frequency domain linear least squares estimators. In: Proceedings, International Modal Analysis Conference (IMAC), pp 1–10

    Google Scholar 

  40. Verboven P, Cauberghe B, Vanlanduit S, Parloo E, Guillaume P (2004) The secret behind clear stabilization diagrams: the influence of the parameter constraint on the stability of the poles. In: Proceedings, Society of Experimental Mechanics (SEM) Annual Conference, vol 17, pp 1–17

    Google Scholar 

  41. Verboven P (2002) Frequency domain system identification for modal analysis, Doctoral dissertation

    Google Scholar 

  42. Cauberghe B (2004) Application of frequency domain system identification for experimental and operational modal analysis, Doctoral dissertation, p 259

    Google Scholar 

  43. Shih C, Tsuei Y, Allemang R, Brown D (1988) Complex mode indication function and its application to spatial domain parameter estimation. Mech Syst Signal Process (MSSP) 2(4):367–377

    Article  Google Scholar 

  44. Frazer R, Duncan W, Collar A (1938) Elementary matrices (1965 Reprint). Cambridge University Press, Cambridge

    Book  Google Scholar 

  45. Tse F, Morse I, Hinkle R (1978) Mechanical vibrations, theory and applications, 2nd edn. Allyn and Bacon, Inc., Boston

    Google Scholar 

  46. SDRC (unknown) (1974) Structural dynamics theory, structural dynamics research corporation

    Google Scholar 

  47. Ljung L (1987) System identification: theory for the user. Prentice-Hall, Inc., Englewood Cliffs

    MATH  Google Scholar 

  48. van Overschee P, De Moor B (1996) Subspace identification of linear systems: theory, implementation, applications. Springer Publishing, Cham

    Book  Google Scholar 

  49. McKelvey T, Akcay H, Ljung L (1996) Subspace-based multivariable system identification from frequency response data. IEEE Trans Autom Control 41(7):960–979

    Article  MathSciNet  Google Scholar 

  50. Vakilzadeh M, Yaghoubi V, McKelvey T, Abrahamsson T, Ljung L (2015) Experimental design for improved frequency domain subspace system identification of continuous-time systems. IFAC PapersOnLine 48(28):886–891

    Article  Google Scholar 

  51. Allemang R, Phillips A (2014) Spatial information in autonomous modal parameter estimation. Shock Vib J 2014:1–18. Special ICEDYN Issue

    Google Scholar 

  52. Allemang R (2003) The modal assurance criterion (MAC): twenty years of use and abuse. Sound Vib Mag (SVM) 37(8):14–23

    Google Scholar 

  53. Cauberghe B, Guillaume P, Verboven P, Parloo E, Vanlanduit S (2004) A poly-reference implementation of the maximum likelihood complex frequency-domain estimator and some industrial applications. In: Proceedings, International Modal Analysis Conference (IMAC), p 12

    Google Scholar 

  54. De Troyer T, Guillaume P, Pintelon R, Vanlanduit S (2009) Fast calculation of confidence intervals on parameter estimates of least-squares frequency-domain estimators. Mech Syst Signal Process (MSSP) 23:261–273

    Article  Google Scholar 

  55. El-Kafafy M, Accardo G, Peeters B, Janssens K, De Troyer T, Guillaume P (2015) A fast maximum likelihood-based estimation of a modal model. In: Proceedings, International Modal Analysis Conference (IMAC), pp 133–156

    Google Scholar 

  56. El-Kafafy M, Peeters B, Guillaume P, De Troyer T (2016) Constrained maximum likelihood modal parameter identification applied to structural dynamics. Mech Syst Signal Process (MSSP) 72–73:567–589

    Article  Google Scholar 

  57. Kennedy C, Pancu C (1947) Use of vectors in vibration measurement and analysis. J Aeronaut Sci 14:603–625

    Article  Google Scholar 

  58. Phillips A, Allemang R (1996) Single degree-of-freedom modal parameter estimation algorithms. In: Proceedings, International Modal Analysis Conference (IMAC)

    Google Scholar 

  59. Fladung W (1994) Multiple reference impact testing, MS thesis, University of Cincinnati

    Google Scholar 

  60. Fladung W, Phillips A, Allemang R (2003) Application of a generalized residual model to frequency domain parameter estimation. J Sound Vib (JSV) 262:677–705

    Article  Google Scholar 

  61. Allemang R, Phillips A, Brown D (2011) Combined state order and model order formulations in the unified matrix polynomial method (UMPA). In: Proceedings, International Modal Analysis Conference (IMAC)

    Google Scholar 

  62. Dippery KD, Phillips AW, Allemang RJ (1996) Spectral decimation in low-order frequency domain modal parameter estimation. J Modal Anal 11:145–154

    Google Scholar 

  63. Phillips A, Allemang R (2004) The impact of measurement condensation and modal participation vector normalization on the estimation of modal vectors and scaling. In: Proceedings, International Modal Analysis Conference (IMAC), p 12

    Google Scholar 

  64. Dippery K, Phillips A, Allemang R (1996) An SVD condensation of the spatial domain in modal parameter estimation. Int J Exp Anal Modal Anal 11

    Google Scholar 

  65. Jolliffe IT (1986) Principal component analysis. Springer, New York and Inc

    Book  Google Scholar 

  66. Strang G (2006) Linear algebra and its applications, 4th edn. Cengage Learning

    MATH  Google Scholar 

  67. Pickrel CR (1996) Numerical assessment of test data using SVD. In: Proceedings, International Modal Analysis Conference (IMAC), Oct 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. J. Allemang or D. L. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Society for Experimental Mechanics

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Allemang, R.J., Brown, D.L. (2020). Experimental Modal Analysis Methods. In: Allemang, R., Avitabile, P. (eds) Handbook of Experimental Structural Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6503-8_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6503-8_36-1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6503-8

  • Online ISBN: 978-1-4939-6503-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Experimental Modal Analysis Methods
    Published:
    01 January 2022

    DOI: https://doi.org/10.1007/978-1-4939-6503-8_36-2

  2. Original

    Experimental Modal Analysis Methods
    Published:
    22 January 2021

    DOI: https://doi.org/10.1007/978-1-4939-6503-8_36-1