Skip to main content

Recent History of Experimental Structural Dynamics

  • Living reference work entry
  • First Online:
Handbook of Experimental Structural Dynamics
  • 109 Accesses

Abstract

This chapter on the recent history of experimental structural dynamics puts much of the Handbook in a historical perspective that begins with the development of digital data methodology and computerized data processing that began in the mid-1960s. Experimental structural dynamics began much earlier with analog, single frequency data acquisition and mostly visual data processing that began in the 1800s with the rail and marine industries, particularly when the steam engine impacted those technologies. The analog, single frequency data acquisition methodology, continued in the automotive and the aircraft industries in the first half of the 1900s. This Handbook mostly chronicles data acquisition and processing methods that began more recently, in the mid-1960s, with the advent of the Fourier transform, analog to digital data conversion, and digital minicomputers to the present time period. The Handbook also discusses many methods and techniques in use during the 1960s and 1970s that utilize experimentally derived models, both linear and nonlinear, to calibrate and validate corresponding analytical models. Part of this discussion includes the issue of the varying dimensionality of the number of degrees of freedom (DOF) between experimental and analytical models. This chapter also discusses the researchers and educators that were part of the development of the experimental structural dynamics methodology in the 1960s to 1980s that led to the current technical state of the art. This discussion includes the identification of researchers and educators that were instrumental to the Society for Experimental Mechanics (SEM) in the development of this area of interest within the Society over the last 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Allemang RJ (1982) Experimental modal analysis bibliography. In: Proceedings, international modal analysis conference (IMAC), pp 714–726

    Google Scholar 

  2. Cooley JW, Tukey J (1965) An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19(90):297

    Article  MathSciNet  MATH  Google Scholar 

  3. Sciammarella CA, Zimmerman KB (2018) The old and new …a narrative on the history of the society for experimental mechanics. Morgan and Claypool Publishers, San Rafael

    Google Scholar 

  4. Stein PK (1990) A brief history of bonded resistance strain gages from conception to commercialization. Exp. Tech. 14(5):13–20

    Article  Google Scholar 

  5. Walter PL (2007) The history of the acccelerometer, 1920s–1996 – prologue and epilogue, 2006. Sound Vib Mag (SVM) 41(1):84–92

    Google Scholar 

  6. Keller AC (1969) Vector component techniques: a modern way to measure modes. Sound Vib Mag (SVM) 3(3):18–26

    Google Scholar 

  7. Bickel HJ (1971) Real time spectrum analysis. Sound Vib Mag (SVM) 5(3):14–20

    Google Scholar 

  8. Keller AC (1975) Real-time spectrum analysis of machinery dynamics. Sound Vib Mag (SVM) 9(4):40–48

    Google Scholar 

  9. Gade S, Herlufsen H (2017) 35 years of structural measurements at Brüel & Kjær. Sound Vib Mag (SVM) 51(1):26–30

    Google Scholar 

  10. Mowry J, Borring G (2012) Journey to greatness. The story of Brüel & Kjær. Acoustical Publications, Inc. Bay Village, OH, www.SandV.com

  11. Keller T (2017) The making of a great company: how spectral dynamics came to be. Sound Vib Mag (SVM) 51(1):64–84

    Google Scholar 

  12. Tustin W (1969) Vibration test equipment. Sound Vib Equip 3(3):27–32

    Google Scholar 

  13. Welaratna S (1997) Thirty years of FFT analyzers. Sound Vib Mag (SVM) 31(1):5

    Google Scholar 

  14. Lang GF (2017) Historical snippets from our half century. Sound Vib Mag (SVM) 51(1):2–4

    Google Scholar 

  15. Allemang R, Brown D, Fladung W (1994) Modal parameter estimation: a unified matrix polynomial approach. In: Proceedings, international modal analysis conference (IMAC), pp 501–514

    Google Scholar 

  16. Lewis RC, Wrisley DL (1950) A system for the excitation of pure natural modes of complex structures. J Aeronaut Sci 17(11):705–722

    Article  Google Scholar 

  17. De Veubeke BF (1956) A variational approach to pure mode excitation based on characteristic phase lag theory. AGARD, Report, vol 39, p 35

    Google Scholar 

  18. Trail-Nash RW (1958) On the excitation of pure natural modes in aircraft resonance testing. J Aeronaut Sci 25(12):775–778

    MATH  Google Scholar 

  19. Asher GW (1958) A method of normal mode excitation utilizing admittance measurements. In: Dynamics of aeroelasticity, Proceedings. Institute of the Aeronautical Sciences, pp 69–76

    Google Scholar 

  20. Stahle CV, Forlifer WR (1958) Ground vibration testing of complex structures. In: Flight flutter testing symposium, NASA-SP-, vol 385, pp 83–90

    Google Scholar 

  21. Stahle CV Jr (1962) Phase separation technique for ground vibration testing. Aerosp Eng 1962:8

    Google Scholar 

  22. DeBlauwe F (1991) Investigation of a parameter estimation algorithm for spatial sine testing. Doctoral Dissertation, University of Cincinnati, vol 117

    Google Scholar 

  23. Deblauwe F, Shih CY, Rost R, Brown DL (1987) Survey of parameter estimation algorithms applicable to spatial domain sine testing. In: Proceedings, international seminar on modal analysis (ISMA), vol 15

    Google Scholar 

  24. Bendat JS, Piersol AG (1986) Random data: analysis and measurement procedures, 2nd edn. Wiley-Interscience, New York

    MATH  Google Scholar 

  25. Napolitano KL (2016) Using singular value decomposition to estimate frequency response functions. Top Modal Anal Test 10:27–44

    Google Scholar 

  26. Allemang R, Patwardhan R, Kolluri M, Phillips A (2022) Frequency response function estimation techniques and the corresponding coherence functions: a review and update. Mech Syst Sig Process (MSSP) 162(1):108100

    Article  Google Scholar 

  27. Prony R (1795) Essai Experimental et Analytique sur les Lois de la Dilatabilite des Fluides Elastiques et sur Celles de la Force Expansive de la Vapeur de l‘eau et de la Vapeur de l‘Alkool, a Differentes Temperatures. Journal de l‘ Ecole Polytechnique (Paris) 1(2):24–76

    Google Scholar 

  28. Ibrahim S, Mikulcik E (1977) A method for the direct identification of vibration parameters from the free response. Shock Vib Bull 47:183–198

    Google Scholar 

  29. Ibrahim S (1978) Modal confidence factor in vibration testing. Shock Vib Bull 48:65–75

    Google Scholar 

  30. Brown D, Allemang R, Zimmerman R, Mergeay M (1979) Parameter estimation techniques for modal analysis. SAE Paper Number 790221, SAE Trans 88:828–846

    Google Scholar 

  31. Vold H, Kundrat J, Rocklin T, Russell R (1982) A multi-input modal estimation algorithm for mini-computers. SAE Trans 91(1):815–821

    Google Scholar 

  32. Vold H and Rocklin T (1982) The numerical implementation of a multi-input modal estimation algorithm for mini-computers. In: Proceedings, international modal analysis conference (IMAC), pp 542–548

    Google Scholar 

  33. Vold H, Leuridan J (1982) A generalized frequency domain matrix estimation method for structural parameter identification. In: Proceedings, international seminar on modal analysis (ISMA)

    Google Scholar 

  34. Juang J-N, Pappa RS (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. AIAA J Guid Control Dyn 8(4):620–627

    Article  MATH  Google Scholar 

  35. Juang J (1987) Mathematical correlation of modal parameter identification methods via system realization theory. J Anal Exp Modal Anal 2(1):1–18

    Google Scholar 

  36. Juang JN, Pappa RS (1985) Effects of noise on ERA-identified modal parameters. AAS Paper, vol 23, No AAS-85-422

    Google Scholar 

  37. Gersch W (1970) Estimation of the auto regressive parameters of a mixed autoregressive moving-average time series. IEEE Trans Autom Control AC-15:583–588

    Article  MathSciNet  Google Scholar 

  38. Gersch W, Luo S (1972) Discrete time series synthesis of randomly excited structural system responses. J Acoust Soc Am 51(1):402–408

    Article  MATH  Google Scholar 

  39. Gersch W, Sharpe DR (1973) Estimation of power spectra with finite-order autoregressive models. IEEE Trans Autom Control AC-18:367–369

    Article  Google Scholar 

  40. Gersch W, Nielsen NN, Akaike H (1973) Maximum likelihood estimation of structural parameters from random vibration data. J Sound Vib (JSV) 31(3):295–308

    Article  MATH  Google Scholar 

  41. Gersch W (1974) On the achievable accuracy of structural system parameter estimates. J Sound Vib (JSV) 34(1):63–79

    Article  MATH  Google Scholar 

  42. Pandit SM (1977) Analysis of vibration records by data dependent systems. Shock Vib Bull (47), 161–174

    Google Scholar 

  43. Pandit SM, Suzuki H (1979) Application of data dependent systems to diagnostic vibration analysis. ASME Paper, No. 79-DET-7, p 9

    Google Scholar 

  44. Link M,and Vollan A (1978) Identification of structural system parameters from dynamic response data. Zeitschrift Fur Flugwissenschaften 2(3):165–174

    Google Scholar 

  45. Leuridan J (1981) Direct system parameter identification of mechanical structures with application to modal analysis. Master of Science Thesis, Department of Mechanical Engineering, University of Cincinnati, p 200

    Google Scholar 

  46. Leuridan J, Mergeay M, Vandeurzen U, Desanghere G (1984) Multiple input estimation of frequency response functions for experimental modal analysis: currently used method and some new developments. In: International seminar on modal analysis, p 34

    Google Scholar 

  47. Leuridan J (1984) Some direct parameter model identification methods applicable for multiple input modal analysis. Doctoral Dissertation, p 384+

    Google Scholar 

  48. Leuridan J, Brown D, Allemang R (1985) Time domain parameter identification methods for linear modal analysis: a unifying approach. ASME Paper Number 85-DET-90

    Google Scholar 

  49. Spitznogle F (1971) Improvements in the complex exponential signal analysis computational algorithm, Report Number U1-829401-5, Representation and Analysis of Sonar Signals, vol 1, p 37

    Google Scholar 

  50. Pappa R (1982) Some statistical performance characteristics of the ITD modal identification algorithm. AIAA Paper Number 82-0768, p 19

    Google Scholar 

  51. Fukuzono K (1986) Investigation of multiple-reference Ibrahim time domain modal parameter estimation technique. M. S. Thesis, p 220

    Google Scholar 

  52. Longman RW, Juang J-N (1989) Recursive form of the eigensystem realization algorithm for system identification. AIAA J Guid Control Dyn 12(5):647–652

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang L, Kanda H, Brown D, Allemang R (1985) A polyreference frequency domain method for modal parameter identification. ASME Paper No. 85-DET-106, p 8

    Google Scholar 

  54. Lembregts F, Leuridan J, Zhang L, Kanda H (1986) Multiple input modal analysis of frequency response functions based on direct parameter identification. In: Proceedings, international modal analysis conference (IMAC)

    Google Scholar 

  55. Lembregts F (1988) Frequency domain identification techniques for experimental multiple input modal analysis, Doctoral Dissertation

    Google Scholar 

  56. Lembregts F, Leuridan J, Van Brussel H (1989) Frequency domain direct parameter identification for modal analysis: state space formulation. Mech Syst Sig Process (MSSP) 4(1):65–76

    Article  MATH  Google Scholar 

  57. Coppolino R (1981) A simultaneous frequency domain technique for estimation of modal parameters from measured data. SAE Paper No. 811046, vol 12

    Google Scholar 

  58. Craig R, Kurdila A, Kim HM (1990) State-space formulation of multi-shaker modal analysis. J Anal Exp Modal Anal 5(3):169–183

    Google Scholar 

  59. Natke H (1988) Updating computational models in the frequency domain based on measured data: a survey. Probab Eng Mech 3(1):28–35

    Article  Google Scholar 

  60. Richardson M, Formenti D (1982) Parameter estimation from frequency response measurements using rational fraction polynomials. In: Proceedings, international modal analysis conference (IMAC), pp 167–182

    Google Scholar 

  61. Shih C, Tsuei Y, Allemang R, Brown D (1988) A frequency domain global parameter estimation method for multiple reference frequency response measurements. Mech Syst Sig Process (MSSP) 2(4):349–365

    Article  MATH  Google Scholar 

  62. Shih C (1989) Investigation of numerical conditioning in the frequency domain modal parameter estimation methods. Doctoral Dissertation, p 127+

    Google Scholar 

  63. Van der Auweraer H, Leuridan J (1987) Multiple input orthogonal polynomial parameter estimation. Mech Syst Sig Processing (MSSP) 1(3):259–272

    Article  MATH  Google Scholar 

  64. Van der Auweraer H, Snoeys R, Leuridan J (1986) A global frequency domain modal parameter estimation technique for mini-computers. ASME J Vib Acoust Stress Reliab Des 108

    Google Scholar 

  65. Vold H (1986) Orthogonal polynomials in the polyreference method. In: Proceedings, international seminar on modal analysis (ISMA)

    Google Scholar 

  66. Vold H, Shih CY (1988) On the numerical conditioning of some modal parameter estimation methods. In: Proceedings, international seminar on modal analysis. In: Proceedings, international seminar on modal analysis

    Google Scholar 

  67. Vold H (1990) Numerically robust frequency domain modal parameter estimation. Sound Vib Mag (SVM) 24(1):38–40

    Google Scholar 

  68. Vold H (1990) Statistics of the characteristic polynomial in modal analysis. In: Proceedings, international seminar on modal analysis (ISMA), pp 53–57

    Google Scholar 

  69. Vold H, Napolitano K, Hensley D, Richardson M (2008) Aliasing in modal parameter estimation, an historical look and new innovations. In: Proceedings, international modal analysis conference (IMAC), vol 16, pp 12–17

    Google Scholar 

  70. Fladung W, Vold H (2016) An improved implementation of the orthogonal polynomial modal parameter estimation algorithm using the orthogonal complement. In: Proceedings, international modal analysis conference (IMAC)

    Google Scholar 

  71. Fladung W, Vold H (2016) An orthogonal view of the polyreference least-squares complex frequency modal parameter estimation algorithm. In: Proceedings, international modal analysis conference (IMAC)

    Google Scholar 

  72. Van der Auweraer H, Guillaume P, Verboven P, Vanlanduit S (2001) Application of a fast-stabilizing frequency domain parameter estimation method. ASME J Dyn Syst Meas Control 123(4):651–658

    Article  Google Scholar 

  73. Guillaume P, Verboven P, Vanlanduit S, Van der Auweraer H, Peeters B (2003) A polyreference implementation of the least-squares complex frequency domain estimator. In: Proceedings, international modal analysis conference (IMAC), p 12

    Google Scholar 

  74. Verboven P, Guillaume P, Cauberghe B, Parloo E, Vanlanduit S (2003) Stabilization charts and uncertainty bounds for frequency domain linear least squares estimators. In: Proceedings, international modal analysis conference (IMAC), pp 1–10

    Google Scholar 

  75. Verboven P, Cauberghe B, Vanlanduit S, Parloo E, Guillaume P (2004) The secret behind clear stabilization diagrams: the influence of the parameter constraint on the stability of the poles. In: Proceedings, society of experimental mechanics (SEM) annual conference, vol 17, pp 1–17

    Google Scholar 

  76. Verboven P (2002) Frequency domain system identification for modal analysis. Doctoral Dissertation

    MATH  Google Scholar 

  77. Cauberghe B (2004) Application of frequency domain system identification for experimental and operational modal analysis. Doctoral Dissertation, p 259

    Google Scholar 

  78. Shih C, Tsuei Y, Allemang R, Brown D (1988) Complex mode indication function and its application to spatial domain parameter estimation. Mech Syst Sig Process (MSSP) 2(4):367–377

    Article  MATH  Google Scholar 

  79. Harris CM, Piersol AG (eds) (2009) Shock and vibration handbook, 6th edn. McGraw-Hill, New York

    Google Scholar 

  80. Kobayashi A (ed) (1994) Handbook on experimental mechanics, 2nd edn. Prentice Hall

    Google Scholar 

  81. Reese RT, Kawahara WA (eds) (1993) Handbook on structural testing. Society of Experimental Mechanics/The Fairmont Press, Inc., Lilburn

    Google Scholar 

  82. Enochson LD, Goodman NR (1965) Gaussian approximations to the distribution of sample coherence, USAF Report AFFDL-TR-65-57, p 33

    Google Scholar 

  83. Goodman NR (1965) Measurement of matrix frequency response functions and multiple coherence functions, USAF Report AFFDL-TR-65-58, p 38

    Google Scholar 

  84. Allemang RJ, Brown DL, Rost RW (1984) Multiple input estimation of frequency response functions for experimental modal analysis, No. AFATL-TR-84-15

    Google Scholar 

  85. Allemang R, Brown D (1987) Volume I: Summary of technical work. Experimental modal analysis and dynamic component synthesis

    Google Scholar 

  86. Allemang R, Brown D (1987) Volume II: Measurement techniques for experimental modal analysis. Experimental modal analysis and dynamic component synthesis

    Google Scholar 

  87. Allemang R, Brown D (1987) Volume III: Modal parameter estimation. Experimental modal analysis and dynamic component synthesis

    Google Scholar 

  88. Allemang R, Brown D (1987) Volume IV: System modeling techniques. Experimental modal analysis and dynamic component synthesis

    Google Scholar 

  89. Allemang R, Brown D (1987) Volume V: Modal parameter estimation. Experimental modal analysis and dynamic component synthesis

    Google Scholar 

  90. Allemang R, Brown D (1987) Volume VI: Software users guide. Experimental modal analysis and dynamic component synthesis

    Google Scholar 

  91. Enochson L, Otnes R (1968) Programming and analysis for digital time series data SVM-3. In: The shock and vibration information center (SAVIAC)

    Google Scholar 

  92. Agency DT (ed) (1996) Dynamic test agency handbook, vols 0–9. Dynamic Testing Agency and Crown Publications

    Google Scholar 

  93. Ewins D (1984) Modal testing: theory and practice. Wiley, New York

    Google Scholar 

  94. Avitabile P (2017) Modal testing: a practitioner’s guide. SEM and John Wiley & Sons Ltd., West Sussex

    Book  Google Scholar 

  95. Coppolino RN (2019) The integrated test analysis process for structural dynamic systems. Morgan & Claypool Publishers, San Rafael

    Google Scholar 

  96. Frazer R, Duncan W, Collar A (1938) Elementary matrices (1965 Reprint). Cambridge University Press, London

    Book  MATH  Google Scholar 

  97. Wilkinson JH (1965) The algebraic eigenvalue problem. Oxford University Press, Oxford

    MATH  Google Scholar 

  98. Strang G (2006) Linear algebra and its applications, 4th edn. Centage Learning, Boston

    MATH  Google Scholar 

  99. Bendat JS, Piersol AG (1966) Measurement and analysis of random data. Wiley, New York City, New York

    Google Scholar 

  100. Bendat JS, Piersol AG (1971) Random data: analysis and measurement procedures, 1st edn. Wiley-Interscience, New York

    MATH  Google Scholar 

  101. Otnes RK, Enochson L (1972) Digital time series analysis. Wiley, New York

    MATH  Google Scholar 

  102. Den Hartog J (1947) Mechanical vibrations, 3rd edn. McGraw-Hill Book Company, New York/London

    MATH  Google Scholar 

  103. Craig, R. Jr., Kurdila A (1982) Fundamentals of structural dynamics. Wiley, New York City, New York

    Google Scholar 

  104. Freeman M (1996) Pioneers of shock and vibration. SAVIAC/Booz-Allen and Hamilton Inc., Arlington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Allemang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Allemang, R.J. (2022). Recent History of Experimental Structural Dynamics. In: Allemang, R., Avitabile, P. (eds) Handbook of Experimental Structural Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6503-8_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6503-8_1-1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6503-8

  • Online ISBN: 978-1-4939-6503-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics