Skip to main content

Cdc14 and Chromosome Condensation: Evaluation of the Recruitment of Condensin to Genomic Regions

  • Protocol
  • First Online:
The Mitotic Exit Network

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1505))

Abstract

Chromosome condensation is an essential morphological event required for successful DNA segregation during mitosis. The high level of genome compaction achieved during this process is attained by the evolutionary conserved condensin complex. Recently, several lines of evidences have demonstrated that the mitotic phosphatase Cdc14 is required to ensure condensin loading onto chromosomes. To date several approaches have been used in order to characterize condensin activity and regulation, however these techniques are time-consuming and require complex equipment. In this chapter we described an easy and reliable protocol to analyze Cdc14-dependent condensin loading onto specific genomic DNA regions by using a chromatin immunoprecipitation (ChIP) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman L, Aragon-Alcaide L, Strunnikov A (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149(4):811–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89(4):511–521

    Article  CAS  PubMed  Google Scholar 

  3. Saka Y, Sutani T, Yamashita Y, Saitoh S, Takeuchi M, Nakaseko Y, Yanagida M (1994) Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J 13(20):4938–4952

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Strunnikov AV, Hogan E, Koshland D (1995) SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev 9(5):587–599

    Article  CAS  PubMed  Google Scholar 

  5. Lavoie BD, Hogan E, Koshland D (2002) In vivo dissection of the chromosome condensation machinery: reversibility of condensation distinguishes contributions of condensin and cohesin. J Cell Biol 156(5):805–815. doi:10.1083/jcb.200109056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A (2005) Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol Cell Biol 25(16):7216–7225. doi:10.1128/MCB.25.16.7216-7225.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D’Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T, Shirahige K, Uhlmann F (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22(16):2215–2227. doi:10.1101/gad.1675708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. St-Pierre J, Douziech M, Bazile F, Pascariu M, Bonneil E, Sauve V, Ratsima H, D'Amours D (2009) Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity. Mol Cell 34(4):416–426. doi:10.1016/j.molcel.2009.04.013

    Article  CAS  PubMed  Google Scholar 

  9. Takemoto A, Kimura K, Yanagisawa J, Yokoyama S, Hanaoka F (2006) Negative regulation of condensin I by CK2-mediated phosphorylation. EMBO J 25(22):5339–5348. doi:10.1038/sj.emboj.7601394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giet R, Glover DM (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152(4):669–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lipp JJ, Hirota T, Poser I, Peters JM (2007) Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J Cell Sci 120(Pt 7):1245–1255. doi:10.1242/jcs.03425

    Article  CAS  PubMed  Google Scholar 

  12. Petersen J, Hagan IM (2003) S. pombe aurora kinase/survivin is required for chromosome condensation and the spindle checkpoint attachment response. Curr Biol 13(7):590–597

    Article  CAS  PubMed  Google Scholar 

  13. Tada K, Susumu H, Sakuno T, Watanabe Y (2011) Condensin association with histone H2A shapes mitotic chromosomes. Nature 474(7352):477–483. doi:10.1038/nature10179

    Article  CAS  PubMed  Google Scholar 

  14. Stegmeier F, Amon A (2004) Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38:203–232. doi:10.1146/annurev.genet.38.072902.093051

    Article  CAS  PubMed  Google Scholar 

  15. D’Amours D, Stegmeier F, Amon A (2004) Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117(4):455–469

    Article  PubMed  Google Scholar 

  16. Sullivan M, Higuchi T, Katis VL, Uhlmann F (2004) Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117(4):471–482

    Article  CAS  PubMed  Google Scholar 

  17. Tomson BN, D’Amours D, Adamson BS, Aragon L, Amon A (2006) Ribosomal DNA transcription-dependent processes interfere with chromosome segregation. Mol Cell Biol 26(16):6239–6247. doi:10.1128/MCB.00693-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Torres-Rosell J, Machin F, Jarmuz A, Aragon L (2004) Nucleolar segregation lags behind the rest of the genome and requires Cdc14p activation by the FEAR network. Cell Cycle 3(4):496–502

    Article  CAS  PubMed  Google Scholar 

  19. Clemente-Blanco A, Mayan-Santos M, Schneider DA, Machin F, Jarmuz A, Tschochner H, Aragon L (2009) Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458(7235):219–222. doi:10.1038/nature07652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clemente-Blanco A, Sen N, Mayan-Santos M, Sacristan MP, Graham B, Jarmuz A, Giess A, Webb E, Game L, Eick D, Bueno A, Merkenschlager M, Aragon L (2011) Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nat Cell Biol 13(12):1450–1456. doi:10.1038/ncb2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bazett-Jones DP, Kimura K, Hirano T (2002) Efficient supercoiling of DNA by a single condensin complex as revealed by electron spectroscopic imaging. Mol Cell 9(6):1183–1190

    Article  CAS  PubMed  Google Scholar 

  22. Petrova B, Dehler S, Kruitwagen T, Heriche JK, Miura K, Haering CH (2013) Quantitative analysis of chromosome condensation in fission yeast. Mol Cell Biol 33(5):984–998. doi:10.1128/MCB.01400-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Porter IM, Khoudoli GA, Swedlow JR (2004) Chromosome condensation: DNA compaction in real time. Curr Biol 14(14):R554–R556. doi:10.1016/j.cub.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  24. Case RB, Chang YP, Smith SB, Gore J, Cozzarelli NR, Bustamante C (2004) The bacterial condensin MukBEF compacts DNA into a repetitive, stable structure. Science 305(5681):222–227. doi:10.1126/science.1098225

    Article  CAS  PubMed  Google Scholar 

  25. Strick TR, Kawaguchi T, Hirano T (2004) Real-time detection of single-molecule DNA compaction by condensin I. Curr Biol 14(10):874–880. doi:10.1016/j.cub.2004.04.038

    Article  CAS  PubMed  Google Scholar 

  26. Cheng TM, Heeger S, Chaleil RA, Matthews N, Stewart A, Wright J, Lim C, Bates PA, Uhlmann F (2015) A simple biophysical model emulates budding yeast chromosome condensation. eLife 4, e05565. doi:10.7554/eLife.05565

    PubMed  PubMed Central  Google Scholar 

  27. Shintomi K, Takahashi TS, Hirano T (2015) Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat Cell Biol 17(8):1014–1023. doi:10.1038/ncb3187

    Article  CAS  PubMed  Google Scholar 

  28. Houlard M, Godwin J, Metson J, Lee J, Hirano T, Nasmyth K (2015) Condensin confers the longitudinal rigidity of chromosomes. Nat Cell Biol 17(6):771–781. doi:10.1038/ncb3167

    Article  CAS  PubMed  Google Scholar 

  29. Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421(6921):448–453. doi:10.1038/nature01411

    Article  CAS  PubMed  Google Scholar 

  30. Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19(3):425–433. doi:10.1006/meth.1999.0879

    Article  CAS  PubMed  Google Scholar 

  31. Nelson JD, Denisenko O, Sova P, Bomsztyk K (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res 34(1), e2. doi:10.1093/nar/gnj004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Teytelman L, Thurtle DM, Rine J, Oudenaarden AV (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci U S A 110:18602–18607. doi:10.1073/pnas.1316064110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leonard J, Sen N, Torres R, Sutani T, Jarmuz A, Shirahige K, Aragon L (2015) Condensin relocalisation from centromeres to chromosome arms promotes Top2 recruitment during anaphase. Cell Rep 13(11):2336–2344. doi:10.1016/j.celrep.2015.11.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Aragón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ramos, F., Leonard, J., Clemente-Blanco, A., Aragón, L. (2017). Cdc14 and Chromosome Condensation: Evaluation of the Recruitment of Condensin to Genomic Regions. In: Monje-Casas, F., Queralt, E. (eds) The Mitotic Exit Network. Methods in Molecular Biology, vol 1505. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6502-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6502-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6500-7

  • Online ISBN: 978-1-4939-6502-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics