Skip to main content

Podocyte Shape Regulation by Semaphorin 3A and MICAL-1

  • Protocol
  • First Online:
Semaphorin Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1493))

Abstract

Podocytes are complex epithelial cells with foot processes that are essential for the integrity and function of the kidney glomerular filters. Podocyte foot processes linked by slit diaphragms constitute signaling platforms that tightly regulate the cell shape and the function of the filtration barrier. Semaphorin (Sema) 3A is a class 3 semaphorin secreted by podocytes that has autocrine and paracrine functions in the kidney. We have shown that Sema3A regulates podocyte shape and that excess Sema3A signaling induces glomerular disease and aggravates diabetic nephropathy. MICAL-1 is an actin-binding protein that mediates Sema3A signals in podocytes. This chapter describes the methods used to examine how Sema3A signaling regulates podocyte shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faul C, Asanuma K, Yanagida-Asanuma E et al (2007) Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 17:428–437

    Article  CAS  PubMed  Google Scholar 

  2. Tran TS, Kolodkin AL, Bharadwaj R (2007) Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23:263–292

    Article  CAS  PubMed  Google Scholar 

  3. Villegas G, Tufro A (2002) Ontogeny of semaphorins 3A and 3F and their receptors neuropilins 1 and 2 in the kidney. Mech Dev 119(Suppl 1):S149–S153

    Article  PubMed  Google Scholar 

  4. Reidy KJ, Villegas G, Teichman J et al (2009) Semaphorin3a regulates endothelial cell number and podocyte differentiation during glomerular development. Development 136:3979–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tufro A, Teichman J, Woda C et al (2008) Semaphorin3a inhibits ureteric bud branching morphogenesis. Mech Dev 125:558–568

    Article  CAS  PubMed  Google Scholar 

  6. Reidy KJ, Aggarwal PK, Jimenez JJ et al (2013) Excess podocyte semaphorin-3A leads to glomerular disease involving plexinA1-nephrin interaction. Am J Pathol 183:1156–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aggarwal PK, Veron D, Thomas DB et al (2015) Semaphorin3a promotes advanced diabetic nephropathy. Diabetes 64(5):1743–59

    Article  CAS  PubMed  Google Scholar 

  8. Terman JR, Mao T, Pasterkamp RJ et al (2002) MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion. Cell 109:887–900

    Article  CAS  PubMed  Google Scholar 

  9. Hung RJ, Yazdani U, Yoon J et al (2010) Mical links semaphorins to F-actin disassembly. Nature 463:823–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou Y, Adolfs Y, Pijnappel WW et al (2011) MICAL-1 is a negative regulator of MST-NDR kinase signaling and apoptosis. Mol Cell Biol 31:3603–3615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumagai K, Hosotani N, Kikuchi K et al (2003) Xanthofulvin, a novel semaphorin inhibitor produced by a strain of Penicillium. J Antibiot (Tokyo) 56:610–616

    Article  CAS  Google Scholar 

  12. Axelrod A, Eliasen AM, Chin MR et al (2013) Syntheses of xanthofulvin and vinaxanthone, natural products enabling spinal cord regeneration. Angew Chem Int Ed Engl 52:3421–3424

    Article  CAS  PubMed  Google Scholar 

  13. Saleem MA, O’Hare MJ, Reiser J et al (2002) A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 13:630–638

    CAS  PubMed  Google Scholar 

  14. Guan F, Villegas G, Teichman J et al (2006) Autocrine class 3 semaphorin system regulates slit diaphragm proteins and podocyte survival. Kidney Int 69:1564–1569

    Article  CAS  PubMed  Google Scholar 

  15. Bertuccio C, Veron D, Aggarwal PK et al (2011) Vascular endothelial growth factor receptor 2 direct interaction with nephrin links VEGF-A signals to actin in kidney podocytes. J Biol Chem 286:39933–39944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alda Tufro M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tufro, A. (2017). Podocyte Shape Regulation by Semaphorin 3A and MICAL-1. In: Terman, J. (eds) Semaphorin Signaling. Methods in Molecular Biology, vol 1493. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6448-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6448-2_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6446-8

  • Online ISBN: 978-1-4939-6448-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics