Skip to main content

Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease

  • Protocol
  • First Online:
Systems Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1488))

Abstract

Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritchie MD, Holzinger ER, Li R et al (2015) Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet 16:85–97. doi:10.1038/nrg3868

    Article  CAS  PubMed  Google Scholar 

  2. Farber CR, Bennett BJ, Orozco L et al (2011) Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis. PLoS Genet 7:e1002038. doi:10.1371/journal.pgen.1002038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Small KS, Hedman AK, Grundberg E et al (2011) Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet 43:561–564. doi:10.1038/ng.833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heinig M, Petretto E, Wallace C et al (2010) A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467:460–464. doi:10.1038/nature09386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kang H, Kerloc’h A, Rotival M et al (2014) Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease. Cell Rep 8:1210–1224. doi:10.1016/j.celrep.2014.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson MR, Behmoaras J, Bottolo L et al (2015) Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nat Commun 6:6031. doi:10.1038/ncomms7031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  CAS  PubMed  Google Scholar 

  8. Ott J, Wang J, Leal SM (2015) Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet 16:275–284. doi:10.1038/nrg3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tenesa A, Haley CS (2013) The heritability of human disease: estimation, uses and abuses. Nat Rev Genet 14:139–149. doi:10.1038/nrg3377

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi:10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boersema PJ, Kahraman A, Picotti P (2015) Proteomics beyond large-scale protein expression analysis. Curr Opin Biotechnol 34C:162–170. doi:10.1016/j.copbio.2015.01.005

    Article  CAS  Google Scholar 

  12. Fuhrer T, Zamboni N (2015) High-throughput discovery metabolomics. Curr Opin Biotechnol 31:73–78. doi:10.1016/j.copbio.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  13. Ramautar R, Berger R, van der Greef J, Hankemeier T (2013) Human metabolomics: strategies to understand biology. Curr Opin Chem Biol 17:841–846. doi:10.1016/j.cbpa.2013.06.015

    Article  CAS  PubMed  Google Scholar 

  14. Albert FW, Treusch S, Shockley AH et al (2014) Genetics of single-cell protein abundance variation in large yeast populations. Nature 506:494–497. doi:10.1038/nature12904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Battle A, Khan Z, Wang SH et al (2014) Impact of regulatory variation from RNA to protein. Science 347:664–667. doi:10.1126/science.1260793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bryois J, Buil A, Evans DM et al (2014) Cis and trans effects of human genomic variants on gene expression. PLoS Genet 10:e1004461. doi:10.1371/journal.pgen.1004461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Albert FW, Kruglyak L (2015) The role of regulatory variation in complex traits and disease. Nat Rev Genet 16:197–212. doi:10.1038/nrg3891

    Article  CAS  PubMed  Google Scholar 

  18. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  CAS  PubMed  Google Scholar 

  19. Schadt EE, Monks SA, Drake TA et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302. doi:10.1038/nature01434

    Article  CAS  PubMed  Google Scholar 

  20. Hubner N, Wallace CA, Zimdahl H et al (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–253. doi: 10.1038/ng1522

  21. King EG, Sanderson BJ, McNeil CL et al (2014) Genetic dissection of the Drosophila melanogaster female head transcriptome reveals widespread allelic heterogeneity. PLoS Genet 10:e1004322. doi:10.1371/journal.pgen.1004322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fu J, Cheng Y, Linghu J et al (2013) RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun 4:2832. doi:10.1038/ncomms3832

    PubMed  Google Scholar 

  23. Rockman MV, Skrovanek SS, Kruglyak L (2010) Selection at linked sites shapes heritable phenotypic variation in C. elegans. Science 330:372–376. doi:10.1126/science.1194208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stranger BE, Montgomery SB, Dimas AS et al (2012) Patterns of cis regulatory variation in diverse human populations. PLoS Genet 8:e1004322. doi:10.1371/journal.pgen.1002639

    Article  CAS  Google Scholar 

  25. Spielman RS, Bastone LA, Burdick JT et al (2007) Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 39:226–231. doi:10.1038/ng1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Storey JD, Madeoy J, Strout JL et al (2007) Gene-expression variation within and among human populations. Am J Hum Genet 80:502–509. doi:10.1086/512017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dimas AS, Deutsch S, Stranger BE et al (2009) Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325:1246–1250. doi:10.1126/science.1174148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nica AC, Parts L, Glass D et al (2011) The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet 7:e1002003. doi:10.1371/journal.pgen.1002003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Myers AJ, Gibbs JR, Webster JA et al (2007) A survey of genetic human cortical gene expression. Nat Genet 39:1494–1499. doi:10.1038/ng.2007.16

    Article  CAS  PubMed  Google Scholar 

  30. Emilsson V, Thorleifsson G, Zhang B et al (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428. doi:10.1038/nature06758

    Article  CAS  PubMed  Google Scholar 

  31. Schadt EE, Molony C, Chudin E et al (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6:e107. doi:10.1371/journal.pbio.0060107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Koopmann TT, Adriaens ME, Moerland PD et al (2014) Genome-wide identification of expression quantitative trait loci (eQTLs) in human heart. PLoS One 9:e97380. doi:10.1371/journal.pone.0097380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lee MN, Ye C, Villani A-C et al (2014) Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343:1246980. doi:10.1126/science.1246980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ye CJ, Feng T, Kwon H-K et al (2014) Intersection of population variation and autoimmunity genetics in human T cell activation. Science 345:1254665. doi:10.1126/science.1254665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Barreiro LB, Tailleux L, Pai AA et al (2012) Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A 109:1204–1209. doi:10.1073/pnas.1115761109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grundberg E, Adoue V, Kwan T et al (2011) Global analysis of the impact of environmental perturbation on cis-regulation of gene expression. PLoS Genet 7:e1001279. doi:10.1371/journal.pgen.1001279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fairfax BP, Makino S, Radhakrishnan J et al (2012) Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet 44:502–510. doi:10.1038/ng.2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fairfax BP, Humburg P, Makino S et al (2014) Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343:1246949. doi:10.1126/science.1246949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Stranger BE, Nica AC, Forrest MS et al (2007) Population genomics of human gene expression. Nat Genet 39:1217–1224. doi:10.1038/ng2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petretto E, Mangion J, Dickens NJ et al (2006) Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet 2:e172. doi:10.1371/journal.pgen.0020172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Powell JE, Henders AK, McRae AF et al (2013) Congruence of additive and non-additive effects on gene expression estimated from pedigree and SNP data. PLoS Genet 9:e1003502. doi:10.1371/journal.pgen.1003502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Westra H-J, Franke L (2014) From genome to function by studying eQTLs. Biochim Biophys Acta 1842:1896–1902. doi:10.1016/j.bbadis.2014.04.024

    Article  CAS  PubMed  Google Scholar 

  43. Breitling R, Li Y, Tesson BM et al (2008) Genetical genomics: spotlight on QTL hotspots. PLoS Genet 4:e1000232. doi:10.1371/journal.pgen.1000232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Morley M, Molony CM, Weber TM et al (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430:743–747. doi:10.1038/nature02797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755. doi:10.1126/science.1069516

    Article  CAS  PubMed  Google Scholar 

  46. Kirsten H, Al-Hasani H, Holdt L et al (2015) Dissecting the genetics of the human transcriptome identifies novel trait-related trans-eQTLs and corroborates the regulatory relevance of non-protein coding loci. Hum Mol Genet 24:4746–4763. doi:10.1093/hmg/ddv194

  47. Battle A, Mostafavi S, Zhu X et al (2014) Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res 24:14–24. doi:10.1101/gr.155192.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Westra H-J, Peters MJ, Esko T et al (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45:1238–1243. doi:10.1038/ng.2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37:4181–4193. doi:10.1093/nar/gkp552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen L (2013) Statistical and computational methods for high-throughput sequencing data analysis of alternative splicing. Stat Biosci 5:138–155. doi:10.1007/s12561-012-9064-7

    Article  PubMed  Google Scholar 

  51. Monlong J, Calvo M, Ferreira PG, Guigó R (2014) Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat Commun 5:4698. doi:10.1038/ncomms5698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pickrell JK, Marioni JC, Pai AA et al (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464:768–772. doi:10.1038/nature08872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Montgomery SB, Sammeth M, Gutierrez-Arcelus M et al (2010) Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464:773–777. doi:10.1038/nature08903

    Article  CAS  PubMed  Google Scholar 

  54. Ardlie KG, Deluca DS, Segre AV et al (2015) The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660. doi:10.1126/science.1262110

    Article  CAS  Google Scholar 

  55. Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28:1353–1358. doi:10.1093/bioinformatics/bts163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Battle A, Montgomery SB (2014) Determining causality and consequence of expression quantitative trait loci. Hum Genet 133:727–735. doi:10.1007/s00439-014-1446-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kudaravalli S, Veyrieras J-B, Stranger BE et al (2009) Gene expression levels are a target of recent natural selection in the human genome. Mol Biol Evol 26:649–658. doi:10.1093/molbev/msn289

    Article  CAS  PubMed  Google Scholar 

  58. Pennacchio LA, Ahituv N, Moses AM et al (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444:499–502. doi:10.1038/nature05295

    Article  CAS  PubMed  Google Scholar 

  59. Jolma A, Yan J, Whitington T et al (2013) DNA-binding specificities of human transcription factors. Cell 152:327–339. doi:10.1016/j.cell.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  60. Li X, Quon G, Lipshitz HD, Morris Q (2010) Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA 16:1096–1107. doi:10.1261/rna.2017210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou T, Yang L, Lu Y et al (2013) DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale. Nucleic Acids Res 41:W56–W62. doi:10.1093/nar/gkt437

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nicolae DL, Gamazon E, Zhang W et al (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6:e1000888. doi:10.1371/journal.pgen.1000888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Nica AC, Dermitzakis ET (2013) Expression quantitative trait loci: present and future. Philos Trans R Soc Lond B Biol Sci 368:20120362. doi:10.1098/rstb.2012.0362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Civelek M, Lusis AJ (2013) Systems genetics approaches to understand complex traits. Nat Rev Genet 15:34–48. doi:10.1038/nrg3575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. De Smet R, Marchal K (2010) Advantages and limitations of current network inference methods. Nat Rev Microbiol 8:717–729. doi:10.1038/nrmicro2419

    PubMed  Google Scholar 

  66. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302:249–255. doi:10.1126/science.1087447

    Article  CAS  PubMed  Google Scholar 

  67. Kim S, Hwang Y, Webster MJ, Lee D (2015) Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders. Mol Psychiatry. doi:10.1038/mp.2015.79

    Google Scholar 

  68. Wang K, Zhao L, Liu X et al (2014) Differential co-expression analysis of rheumatoid arthritis with microarray data. Mol Med Rep 10:2421–2426

    CAS  PubMed  Google Scholar 

  69. Amar D, Safer H, Shamir R (2013) Dissection of regulatory networks that are altered in disease via differential co-expression. PLoS Comput Biol 9:e1002955. doi:10.1371/journal.pcbi.1002955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Min JL, Nicholson G, Halgrimsdottir I et al (2012) Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes. PLoS Genet 8:e1002505. doi:10.1371/journal.pgen.1002505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tesson B, Breitling R, Jansen R (2010) DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinformatics 11:497. doi:10.1186/1471-2105-11-497

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xiao X, Moreno-Moral A, Rotival M et al (2014) Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules. PLoS Genet 10:e1004006. doi:10.1371/journal.pgen.1004006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Rotival M, Petretto E (2014) Leveraging gene co-expression networks to pinpoint the regulation of complex traits and disease, with a focus on cardiovascular traits. Brief Funct Genomics 13:66–78. doi:10.1093/bfgp/elt030

    Article  PubMed  Google Scholar 

  74. Pérez-Palma E, Bustos BI, Villamán CF et al (2014) Overrepresentation of glutamate signaling in Alzheimer’s disease: network-based pathway enrichment using meta-analysis of genome-wide association studies. PLoS One 9:e95413. doi:10.1371/journal.pone.0095413

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mercader JM, Puiggros M, Segrè AV et al (2012) Identification of novel type 2 diabetes candidate genes involved in the crosstalk between the mitochondrial and the insulin signaling systems. PLoS Genet 8:e1003046. doi:10.1371/journal.pgen.1003046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Voineagu I, Wang X, Johnston P et al (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474:380–384. doi:10.1038/nature10110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liebermeister W (2002) Linear modes of gene expression determined by independent component analysis. Bioinformatics 18:51–60

    Article  CAS  PubMed  Google Scholar 

  78. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791. doi:10.1038/44565

    Article  CAS  PubMed  Google Scholar 

  79. Alter O, Brown PO, Botstein D (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci U S A 97:10101–10106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. doi:10.1186/1471-2105-9-559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17

    PubMed  Google Scholar 

  82. Hardin J, Mitani A, Hicks L, VanKoten B (2007) A robust measure of correlation between two genes on a microarray. BMC Bioinformatics 8:220. doi:10.1186/1471-2105-8-220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Meyer PE, Lafitte F, Bontempi G (2008) minet: A R/bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 9:461. doi:10.1186/1471-2105-9-461

    Article  PubMed  PubMed Central  Google Scholar 

  84. Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68. doi:10.1038/nrg2918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Carlson MRJ, Zhang B, Fang Z et al (2006) Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics 7:40. doi:10.1186/1471-2164-7-40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Margolin AA, Nemenman I, Basso K et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7. doi:10.1186/1471-2105-7-S1-S7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Faith JJ, Hayete B, Thaden JT et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5:e8. doi:10.1371/journal.pbio.0050008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Mahdi R, Madduri AS, Wang G et al (2012) Empirical Bayes conditional independence graphs for regulatory network recovery. Bioinformatics 28:2029–2036. doi:10.1093/bioinformatics/bts312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432–441. doi:10.1093/biostatistics/kxm045

    Article  PubMed  Google Scholar 

  90. Schäfer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21:754–764. doi:10.1093/bioinformatics/bti062

    Article  PubMed  Google Scholar 

  91. Matys V, Kel-Margoulis OV, Fricke E et al (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34:D108–D110. doi:10.1093/nar/gkj143

    Article  CAS  PubMed  Google Scholar 

  92. Mathelier A, Zhao X, Zhang AW et al (2014) JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 42:D142–D147. doi:10.1093/nar/gkt997

    Article  CAS  PubMed  Google Scholar 

  93. Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 41:W77–W83. doi:10.1093/nar/gkt439

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305–W311. doi:10.1093/nar/gkp427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  96. Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577. doi:10.1038/nrg2612

    Article  CAS  PubMed  Google Scholar 

  97. Petretto E, Sarwar R, Grieve I et al (2008) Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat Genet 40:546–552. doi:10.1038/ng.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Morrissey C, Grieve IC, Heinig M et al (2011) Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat. Physiol Genomics 43:1207–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. doi:10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in genome-wide association studies. Nat Rev Genet 11:843–854. doi:10.1038/nrg2884

    Article  CAS  PubMed  Google Scholar 

  101. Segrè AV, Groop L, Mootha VK et al (2010) Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 6:e1001058. doi:10.1371/journal.pgen.1001058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. De Leeuw CA, Mooij JM, Heskes T, Posthuma D (2015) MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 11:e1004219. doi:10.1371/journal.pcbi.1004219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Mooney MA, Nigg JT, McWeeney SK, Wilmot B (2014) Functional and genomic context in pathway analysis of GWAS data. Trends Genet 30:390–400. doi:10.1016/j.tig.2014.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Derry JMJ, Zhong H, Molony C et al (2010) Identification of genes and networks driving cardiovascular and metabolic phenotypes in a mouse F2 intercross. PLoS One 5:e14319. doi:10.1371/journal.pone.0014319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rotival M, Zeller T, Wild PS et al (2011) Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans. PLoS Genet 7:e1002367. doi:10.1371/journal.pgen.1002367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grundberg E, Small KS, Hedman ÅK et al (2012) Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet 44:1084–1089. doi:10.1038/ng.2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Weiser M, Mukherjee S, Furey TS (2014) Novel distal eQTL analysis demonstrates effect of population genetic architecture on detecting and interpreting associations. Genetics 198:879–893. doi:10.1534/genetics.114.167791

    Article  PubMed  PubMed Central  Google Scholar 

  108. Langley SR, Bottolo L, Kunes J et al (2013) Systems-level approaches reveal conservation of trans-regulated genes in the rat and genetic determinants of blood pressure in humans. Cardiovasc Res 97:653–665. doi:10.1093/cvr/cvs329

    Article  CAS  PubMed  Google Scholar 

  109. Stegle O, Parts L, Piipari M et al (2012) Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc 7:500–507. doi:10.1038/nprot.2011.457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kendziorski CM, Chen M, Yuan M et al (2006) Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62:19–27. doi:10.1111/j.1541-0420.2005.00437.x

    Article  CAS  PubMed  Google Scholar 

  111. Bottolo L, Petretto E, Blankenberg S et al (2011) Bayesian detection of expression quantitative trait loci hot spots. Genetics 189:1449–1459. doi:10.1534/genetics.111.131425

    Article  PubMed  PubMed Central  Google Scholar 

  112. Scott-Boyer MP, Imholte GC, Tayeb A et al (2012) An integrated hierarchical Bayesian model for multivariate eQTL mapping. Stat Appl Genet Mol Biol 11:4. doi:10.1515/1544-6115.1760

    Google Scholar 

  113. Lewin A, Saadi H, Peters JE et al (2016) MT-HESS: an efficient Bayesian approach for simultaneous association detection in OMICS datasets, with application to eQTL mapping in multiple tissues. Bioinformatics 32(4):523–532

    Article  CAS  PubMed  Google Scholar 

  114. Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589. doi:10.1038/ng.609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Teslovich TM, Musunuru K, Smith AV et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713. doi:10.1038/nature09270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Honda K, Yanai H, Negishi H et al (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–777. doi:10.1038/nature03464

    Article  CAS  PubMed  Google Scholar 

  117. Petretto E, Bottolo L, Langley SR et al (2010) New insights into the genetic control of gene expression using a Bayesian multi-tissue approach. PLoS Comput Biol 6:e1000737. doi:10.1371/journal.pcbi.1000737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Rotival M, Ko J-H, Srivastava PK et al (2015) Integrating phosphoproteome and transcriptome reveals new determinants of macrophage multinucleation. Mol Cell Proteomics 14:484–498. doi:10.1074/mcp.M114.043836

    Article  CAS  PubMed  Google Scholar 

  119. Maroso M, Balosso S, Ravizza T et al (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16:413–419. doi:10.1038/nm.2127

    Article  CAS  PubMed  Google Scholar 

  120. Budanov AV, Sablina AA, Feinstein E et al (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600. doi:10.1126/science.1095569

    Article  CAS  PubMed  Google Scholar 

  121. Mazzuferi M, Kumar G, Rospo C, Kaminski RM (2012) Rapid epileptogenesis in the mouse pilocarpine model: video-EEG, pharmacokinetic and histopathological characterization. Exp Neurol 238:156–167. doi:10.1016/j.expneurol.2012.08.022

    Article  CAS  PubMed  Google Scholar 

  122. Baxendale S, Holdsworth CJ, Meza Santoscoy PL et al (2012) Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Model Mech 5:773–784. doi:10.1242/dmm.010090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wills QF, Livak KJ, Tipping AJ et al (2013) Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat Biotechnol 31:748–752. doi:10.1038/nbt.2642

    Article  CAS  PubMed  Google Scholar 

  124. Xue Q, Lu Y, Eisele MR et al (2015) Analysis of single-cell cytokine secretion reveals a role for paracrine signaling in coordinating macrophage responses to TLR4 stimulation. Sci Signal 8:59. doi:10.1126/scisignal.aaa2155

    Article  CAS  Google Scholar 

  125. Pina C, Teles J, Fugazza C et al (2015) Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis. Cell Rep 11:1503–1510. doi:10.1016/j.celrep.2015.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Moignard V, Woodhouse S, Haghverdi L et al (2015) Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 33:269–276. doi:10.1038/nbt.3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214. doi:10.1016/j.cell.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang J, Fan HC, Behr B, Quake SR (2012) Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150:402–412. doi:10.1016/j.cell.2012.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang C, Li C, Wang Q et al (2015) Implications of pleiotropy: challenges and opportunities for mining Big Data in biomedicine. Front Genet 6:229. doi:10.3389/fgene.2015.00229

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the British Heart Foundation (Ph.D. Studentship grant FS/11/25/28740; E.P. and A.M.M.), the European Union FP7 (ERG-239158, CardioNeT-ITN-289600, F.P.), Kidney Research UK (RP9/2013) (J.B.) and Medical Research Council Grant MR/M004716/1 (J.B. and E.P.) and Duke-NUS Graduate Medical School Singapore (E.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Petretto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moreno-Moral, A., Pesce, F., Behmoaras, J., Petretto, E. (2017). Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease. In: Schughart, K., Williams, R. (eds) Systems Genetics. Methods in Molecular Biology, vol 1488. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6427-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6427-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6425-3

  • Online ISBN: 978-1-4939-6427-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics