Skip to main content

Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends

  • Protocol
  • First Online:
Optical Tweezers

Abstract

Microtubules are dynamic cytoskeletal polymers that polymerize and depolymerize while interacting with different proteins and structures within the cell. The highly regulated dynamic properties as well as the pushing and pulling forces generated by dynamic microtubule ends play important roles in processes such as in cell division. For instance, microtubule end-binding proteins are known to affect dramatically the dynamic properties of microtubules, and cortical dyneins are known to mediate pulling forces on microtubule ends. We discuss in this chapter our efforts to reconstitute these systems in vitro and mimic their interactions with structures within the cellĀ using micro-fabricated barriers. Using an optical tweezers setup, we investigate the dynamics and forces of microtubules growing against functionalized barriers in the absence and presence of end-binding proteins and barrier-attached motor proteins. This setup allows high-speed as well as nanometer and piconewton resolution measurements on dynamic microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237ā€“242. doi:10.1038/312237a0

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Scholey J, Brust-Mascher I, Mogilner A (2003) Cell division. Nature 422:746ā€“752. doi:10.1038/nature01599

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Howard J, Hyman AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422:753ā€“758. doi:10.1038/nature01600

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Grill S, Hyman AA (2005) Spindle positioning by cortical pulling forces. Dev Cell 8:461ā€“465. doi:10.1016/j.devcel.2005.03.014

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Tran PT, Marsh L, Doye V, Inoue S, Chang F (2001) A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J Cell Biol 153:397ā€“411. doi:10.1083/jcb.153.2.397

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Kimura A, Onami S (2007) Local cortical pulling-force repression switches centrosomal centration and posterior displacement in C. elegans. J Cell Biol 179:1347ā€“1354. doi:10.1083/jcb.200706005

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Dogterom M, Surrey T (2013) Microtubule organization in vitro. Curr Opin Cell Biol 25:23ā€“29. doi:10.1016/j.ceb.2012.12.002

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Dogterom M, Yurke B (1997) Measurement of the force-velocity relation for growing microtubules. Science 278:856ā€“860. doi:10.1126/science.278.5339.856

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Janson M, de Dood M, Dogterom M (2003) Dynamic instability of microtubules is regulated by force. J Cell Biol 161:1029ā€“1034. doi:10.1083/jcb.200301147

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Laan L, Pavin N, Husson J, Romet-Lemonne G, van Duijn M, Preciado-Lopez M, Vale RD, JĆ¼licher F, Reck-Peterson SL, Dogterom M (2012) Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148:502ā€“514. doi:10.1016/j.cell.2012.01.007

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Roth S, Laan L, Dogterom M (2014) Reconstitution of cortical dynein function. In: Vale RD (ed) Reconstituting the cytoskeleton, vol 540, Methods in enzymology. Academic, New York, NY, pp 205ā€“230. doi:10.1016/B978-0-12-397924-7.00012-1

    ChapterĀ  Google ScholarĀ 

  12. Kerssemakers JWJ, Munteanu EL, Laan L, Noetzel TL, Janson ME, Dogterom M (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442:709ā€“712. doi:10.1038/nature04928

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Kerssemakers JWJ, Janson ME, van der Horst A, Dogterom M (2003) Optical trap setup for measuring microtubule pushing forces. Appl Phys Lett 83:4441ā€“4443. doi:10.1063/1.1629796

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Laan L, Dogterom M (2010) In vitro assays to study force generation at dynamic microtubule ends. In: Wilson L, Correia JJ (eds) Microtubules, in vitro, vol 95, Methods in cell biology. Springer, Berlin, pp 617ā€“639. doi:10.1016/S0091-679X(10)95031-0

    ChapterĀ  Google ScholarĀ 

  15. Kalisch S-M, Laan L, Dogterom M (2011) Force generation by dynamic microtubules in vitro. Methods Cell Biol 777:147ā€“165. doi:10.1007/978-1-61779-252-6_11

    CASĀ  Google ScholarĀ 

  16. Love J, Estroff L, Kriebel J, Nuzzo R, Whitesides G (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103ā€“1169. doi:10.1021/cr0300789

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335ā€“348. doi:10.1016/j.cell.2006.05.046

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Goodman BS, Reck-Peterson SL (2014) Engineering defined motor ensembles with DNA origami. In: Vale RD (ed) Reconstituting the cytoskeleton, vol 540, Methods in enzymology. Academic, New York, NY, pp 169ā€“188. doi:10.1016/B978-0-12-397924-7.00010-8

    ChapterĀ  Google ScholarĀ 

  19. Cassidy-Hanley DM (2012) Tetrahymena in the laboratory: strain resources, methods for culture, maintenance, and storage. Methods Cell Biol 109:237ā€“276. doi:10.1016/B978-0-12-385967-9.00008-6

    ArticleĀ  Google ScholarĀ 

  20. Gutierrez JC, Orias E (1992) Genetic characterization of Tetrahymena thermophila mutants unable to secrete capsules. Dev Genet 13:160ā€“166. doi:10.1002/dvg.1020130210

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Thompson GA, Baugh LC, Walker LF (1974) Nonlethal deciliation of Tetrahymena by a local anesthetic and its utility as a tool for studying cilia regeneration. J Cell Biol 61:253ā€“257. doi:10.1083/jcb.61.1.253

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Mucus minus tetrahymena strain: SB715, Cornell Tetrahymena Stock Center, ID: SD01508 exoA1/exoA1; chx1-1/CHX1-1 (exoA1; CHX1; exo minus; cy-s, II), (http://tetrahymena.vet.cornell.edu).

  23. Romet-Lemonne G, van Duijn M, Dogterom M (2005) Three-dimensional control of protein patterning in microfabricated devices. Nano Lett 5:2350ā€“2354. doi:10.1021/nl0507111

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Dogterom M, Kerssemakers JWJ, Romet-Lemonne G, Janson ME (2005) Force generation by dynamic microtubules. Curr Opin Cell Biol 17:67ā€“74. doi:10.1016/j.ceb.2004.12.011

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Satir B, Sale WS, Satir P (1976) Membrane renewal after dibucaine deciliation of Tetrahymena ā€“ freeze-fracture technique, cilia, membrane structure. Exp Cell Res 97:83ā€“91. doi:10.1016/0014-4827(76)90657-1

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Johnson KA (1986) Preparation and properties of dynein from Tetrahymena cilia. Methods Enzymol 134:306ā€“317

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Boal AK, Tellez H, Rivera SB, Miller NE, Bachand GD, Bunker BC (2006) The stability and functionality of chemically crosslinked microtubules. Small 2:793ā€“803. doi:10.1002/smll.200500381

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J Sel Top Quantum Electron 2:1066ā€“1076. doi:10.1109/2944.577338

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Gittes F, Schmidt CF (1998) Signals and noise in micromechanical measurements. Methods Cell Biol 55:129ā€“156

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184ā€“189. doi:10.1038/22146

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Laan L, Husson J, Munteanu EL, Kerssemakers JWJ, Dogterom M (2008) Force-generation and dynamic instability of microtubule bundles. Proc Natl Acad Sci U S A 105:8920ā€“8925. doi:10.1073/pnas.0710311105

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Muller-Reichert T, Chretien D, Severin F, Hyman AA (1998) Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha, beta)methylenediphosphonate. Proc Natl Acad Sci U S A 95:3661ā€“3666. doi:10.1073/pnas.95.7.3661

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Gardner MK, Zanic M, Howard J (2013) Microtubule catastrophe and rescue. Curr Opin Cell Biol 25:14ā€“22. doi:10.1016/j.ceb.2012.09.006

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M, Brunner D, Surrey T (2007) Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450:1100ā€“1105. doi:10.1038/nature06386

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309ā€“322. doi:10.1038/nrm2369

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Ron H, Matlis S, Rubinstein I (1998) Self-assembled monolayers on oxidized metals. 2. Gold surface oxidative pre-treatment, monolayer properties, and depression formation. Langmuir 14:1116ā€“1121. doi:10.1021/la970785v

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

We thank Matthew Footer for the help in setting up the axoneme purification from Tetrahymena thermophila and Samara Reck-Peterson and her lab for the training and assistance in setting up the dynein purification from Saccharomyces cerevisiae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marileen Dogterom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baclayon, M. et al. (2017). Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics