Skip to main content

Immunological Challenges Facing Translation of Alginate Encapsulated Porcine Islet Xenotransplantation to Human Clinical Trials

  • Protocol
  • First Online:
Cell Microencapsulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1479))

Abstract

Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves. The lack of standardization of significant parameters of bioencapsulation device design and manufacture (i.e., purification protocols, surface-modification grafting techniques, alginate composition modifications) between labs is yet another obstacle that must be overcome before a clinically effective and applicable protocol for encapsulating islets can be implemented. Nonetheless, substantial progress is being made, as is evident from prolonged graft survival times and improved protection from immune-mediated graft destruction reported by various research groups, but also with regard to discoveries of specific pathways involved in explaining observed outcomes. Progress in the latter is essential for a comprehensive understanding of the mechanisms responsible for the varying levels of immunogenicity of certain alginate devices. Successful translation of encapsulated islet transplantation from in vitro and animal model testing to human clinical trials hinges on application of this knowledge of the pathways and interactions which comprise immune-mediated rejection. Thus, this review not only focuses on the different factors contributing to provocation of the immune reaction by encapsulated islets, but also on the defining characteristics of the response itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brennan DC, Kopetskie HA, Sayre PH, Alejandro R, Cagliero E, Shapiro AM, Goldstein JS, DesMarais MR, Booher S, Bianchine PJ (2015) Long-term follow-up of the Edmonton protocol of islet transplantation in the United States. Am J Transplant. doi:10.1111/ajt.13458

    Google Scholar 

  2. Dang TT, Thai AV, Cohen J, Slosberg JE, Siniakowicz K, Doloff JC, Ma M, Hollister-Lock J, Tang KM, Gu Z, Cheng H, Weir GC, Langer R, Anderson DG (2013) Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 34(23):5792–5801. doi:10.1016/j.biomaterials.2013.04.016

    Article  CAS  Google Scholar 

  3. Paredes Juarez GA, Spasojevic M, Faas MM, de Vos P (2014) Immunological and technical considerations in application of alginate-based microencapsulation systems. Frontiers Bioeng Biotechnol 2:26. doi:10.3389/fbioe.2014.00026

    Article  Google Scholar 

  4. Mallett AG, Korbutt GS (2009) Alginate modification improves long-term survival and function of transplanted encapsulated islets. Tissue Eng Part A 15(6):1301–1309. doi:10.1089/ten.tea.2008.0118

    Article  CAS  Google Scholar 

  5. de Vos P, van Hoogmoed CG, de Haan BJ, Busscher HJ (2002) Tissue responses against immunoisolating alginate-PLL capsules in the immediate posttransplant period. J Biomed Mater Res 62(3):430–437. doi:10.1002/jbm.10345

    Article  CAS  Google Scholar 

  6. Kumar S, Ingle H, Prasad DV, Kumar H (2013) Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol 39(3):229–246. doi:10.3109/1040841X.2012.706249

    Article  CAS  Google Scholar 

  7. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384. doi:10.1038/ni.1863

    Article  CAS  Google Scholar 

  8. Pearl JI, Ma T, Irani AR, Huang Z, Robinson WH, Smith RL, Goodman SB (2011) Role of the Toll-like receptor pathway in the recognition of orthopedic implant wear-debris particles. Biomaterials 32(24):5535–5542. doi:10.1016/j.biomaterials.2011.04.046

    Article  CAS  Google Scholar 

  9. De Vos P, De Haan B, Van Schilfgaarde R (1997) Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials 18(3):273–278

    Article  Google Scholar 

  10. Dusseault J, Tam SK, Menard M, Polizu S, Jourdan G, Yahia L, Halle JP (2006) Evaluation of alginate purification methods: effect on polyphenol, endotoxin, and protein contamination. J Biomed Mater Res A 76(2):243–251. doi:10.1002/jbm.a.30541

    Article  CAS  Google Scholar 

  11. Zimmermann U, Thurmer F, Jork A, Weber M, Mimietz S, Hillgartner M, Brunnenmeier F, Zimmermann H, Westphal I, Fuhr G, Noth U, Haase A, Steinert A, Hendrich C (2001) A novel class of amitogenic alginate microcapsules for long-term immunoisolated transplantation. Ann N Y Acad Sci 944:199–215

    Article  CAS  Google Scholar 

  12. Tam SK, Dusseault J, Polizu S, Menard M, Halle JP, Yahia L (2006) Impact of residual contamination on the biofunctional properties of purified alginates used for cell encapsulation. Biomaterials 27(8):1296–1305. doi:10.1016/j.biomaterials.2005.08.027

    Article  CAS  Google Scholar 

  13. de Haan BJ, Rossi A, Faas MM, Smelt MJ, Sonvico F, Colombo P, de Vos P (2011) Structural surface changes and inflammatory responses against alginate-based microcapsules after exposure to human peritoneal fluid. J Biomed Mater Res A 98(3):394–403. doi:10.1002/jbm.a.33123

    Article  CAS  Google Scholar 

  14. de Vos P, van Hoogmoed CG, van Zanten J, Netter S, Strubbe JH, Busscher HJ (2003) Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomaterials 24(2):305–312

    Article  Google Scholar 

  15. Halle JP, Bourassa S, Leblond FA, Chevalier S, Beaudry M, Chapdelaine A, Cousineau S, Saintonge J, Yale JF (1993) Protection of islets of Langerhans from antibodies by microencapsulation with alginate-poly-l-lysine membranes. Transplantation 55(2):350–354

    Article  CAS  Google Scholar 

  16. Paredes-Juarez GA, de Haan BJ, Faas MM, de Vos P (2013) The role of pathogen-associated molecular patterns in inflammatory responses against alginate based microcapsules. J Control Release 172(3):983–992. doi:10.1016/j.jconrel.2013.09.009

    Article  CAS  Google Scholar 

  17. de Vos P, Spasojevic M, de Haan BJ, Faas MM (2012) The association between in vivo physicochemical changes and inflammatory responses against alginate based microcapsules. Biomaterials 33(22):5552–5559. doi:10.1016/j.biomaterials.2012.04.039

    Article  CAS  Google Scholar 

  18. Ponce S, Orive G, Hernandez R, Gascon AR, Pedraz JL, de Haan BJ, Faas MM, Mathieu HJ, de Vos P (2006) Chemistry and the biological response against immunoisolating alginate-polycation capsules of different composition. Biomaterials 27(28):4831–4839. doi:10.1016/j.biomaterials.2006.05.014

    Article  CAS  Google Scholar 

  19. Espevik T, Otterlei M, Skjak-Braek G, Ryan L, Wright SD, Sundan A (1993) The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. Eur J Immunol 23(1):255–261. doi:10.1002/eji.1830230140

    Article  CAS  Google Scholar 

  20. Otterlei M, Ostgaard K, Skjak-Braek G, Smidsrod O, Soon-Shiong P, Espevik T (1991) Induction of cytokine production from human monocytes stimulated with alginate. J Immunother 10(4):286–291

    Article  CAS  Google Scholar 

  21. Tam SK, Bilodeau S, Dusseault J, Langlois G, Halle JP, Yahia LH (2011) Biocompatibility and physicochemical characteristics of alginate-polycation microcapsules. Acta Biomater 7(4):1683–1692. doi:10.1016/j.actbio.2010.12.006

    Article  CAS  Google Scholar 

  22. Duvivier-Kali VF, Omer A, Parent RJ, O'Neil JJ, Weir GC (2001) Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 50(8):1698–1705

    Article  CAS  Google Scholar 

  23. Omer A, Duvivier-Kali V, Fernandes J, Tchipashvili V, Colton CK, Weir GC (2005) Long-term normoglycemia in rats receiving transplants with encapsulated islets. Transplantation 79(1):52–58

    Article  CAS  Google Scholar 

  24. Orive G, Hernandez RM, Rodriguez Gascon A, Calafiore R, Chang TM, de Vos P, Hortelano G, Hunkeler D, Lacik I, Pedraz JL (2004) History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 22(2):87–92

    Article  CAS  Google Scholar 

  25. Tam SK, Dusseault J, Bilodeau S, Langlois G, Halle JP, Yahia L (2011) Factors influencing alginate gel biocompatibility. J Biomed Mater Res A 98(1):40–52. doi:10.1002/jbm.a.33047

    Article  CAS  Google Scholar 

  26. Park H, Park K (1996) Biocompatibility issues of implantable drug delivery systems. Pharm Res 13(12):1770–1776

    Article  CAS  Google Scholar 

  27. Juste S, Lessard M, Henley N, Menard M, Halle JP (2005) Effect of poly-l-lysine coating on macrophage activation by alginate-based microcapsules: assessment using a new in vitro method. J Biomed Mater Res A 72(4):389–398. doi:10.1002/jbm.a.30254

    Article  CAS  Google Scholar 

  28. Vandenbossche GM, Bracke ME, Cuvelier CA, Bortier HE, Mareel MM, Remon JP (1993) Host reaction against empty alginate-polylysine microcapsules. Influence of preparation procedure. J Pharm Pharmacol 45(2):115–120

    Article  CAS  Google Scholar 

  29. Thu B, Bruheim P, Espevik T, Smidsrod O, Soon-Shiong P, Skjak-Braek G (1996) Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials 17(10):1031–1040

    Article  CAS  Google Scholar 

  30. Darrabie MD, Kendall WF Jr, Opara EC (2005) Characteristics of poly-l-ornithine-coated alginate microcapsules. Biomaterials 26(34):6846–6852. doi:10.1016/j.biomaterials.2005.05.009

    Article  CAS  Google Scholar 

  31. Gon S, Fang B, Santore MM (2011) Interaction of cationic proteins and polypeptides with biocompatible cationically-anchored PEG brushes. Macromolecules 44(20)

    Google Scholar 

  32. Veronese FM, Mero A (2008) The impact of PEGylation on biological therapies. BioDrugs 22(5):315–329

    Article  CAS  Google Scholar 

  33. van Schilfgaarde R, de Vos P (1999) Factors influencing the properties and performance of microcapsules for immunoprotection of pancreatic islets. J Mol Med 77(1):199–205

    Article  Google Scholar 

  34. Safley SA, Cui H, Cauffiel S, Tucker-Burden C, Weber CJ (2008) Biocompatibility and immune acceptance of adult porcine islets transplanted intraperitoneally in diabetic NOD mice in calcium alginate poly-l-lysine microcapsules versus barium alginate microcapsules without poly-l-lysine. J Diabetes Sci Technol 2(5):760–767

    Article  Google Scholar 

  35. Qi M, Morch Y, Lacik I, Formo K, Marchese E, Wang Y, Danielson KK, Kinzer K, Wang S, Barbaro B, Kollarikova G, Chorvat D Jr, Hunkeler D, Skjak-Braek G, Oberholzer J, Strand BL (2012) Survival of human islets in microbeads containing high guluronic acid alginate crosslinked with Ca2+ and Ba2+. Xenotransplantation 19(6):355–364. doi:10.1111/xen.12009

    Article  Google Scholar 

  36. Morch YA, Qi M, Gundersen PO, Formo K, Lacik I, Skjak-Braek G, Oberholzer J, Strand BL (2012) Binding and leakage of barium in alginate microbeads. J Biomed Mater Res A 100(11):2939–2947. doi:10.1002/jbm.a.34237

    Article  CAS  Google Scholar 

  37. Morch YA, Donati I, Strand BL, Skjak-Braek G (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7(5):1471–1480. doi:10.1021/bm060010d

    Article  CAS  Google Scholar 

  38. Li HB, Jiang H, Wang CY, Duan CM, Ye Y, Su XP, Kong QX, Wu JF, Guo XM (2006) Comparison of two types of alginate microcapsules on stability and biocompatibility in vitro and in vivo. Biomed Mater 1(1):42–47. doi:10.1088/1748-6041/1/1/007

    Article  CAS  Google Scholar 

  39. Elbert DL, Herbert CB, Hubbell JA (1999) Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 15(16)

    Google Scholar 

  40. Elliott RB, Escobar L, Tan PL, Garkavenko O, Calafiore R, Basta P, Vasconcellos AV, Emerich DF, Thanos C, Bambra C (2005) Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc 37(8):3505–3508. doi:10.1016/j.transproceed.2005.09.038

    Article  CAS  Google Scholar 

  41. Tuch BE, Keogh GW, Williams LJ, Wu W, Foster JL, Vaithilingam V, Philips R (2009) Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32(10):1887–1889. doi:10.2337/dc09-0744

    Article  CAS  Google Scholar 

  42. Vaithilingam V, Fung C, Ratnapala S, Foster J, Vaghjiani V, Manuelpillai U, Tuch BE (2013) Characterisation of the xenogeneic immune response to microencapsulated fetal pig islet-like cell clusters transplanted into immunocompetent C57BL/6 mice. PLoS One 8(3):e59120. doi:10.1371/journal.pone.0059120

    Article  CAS  Google Scholar 

  43. Bennet W, Bjorkland A, Sundberg B, Davies H, Liu J, Holgersson J, Korsgren O (2000) A comparison of fetal and adult porcine islets with regard to Gal alpha (1,3)Gal expression and the role of human immunoglobulins and complement in islet cell cytotoxicity. Transplantation 69(8):1711–1717

    Article  CAS  Google Scholar 

  44. Marigliano M, Bertera S, Grupillo M, Trucco M, Bottino R (2011) Pig-to-nonhuman primates pancreatic islet xenotransplantation: an overview. Curr Diab Rep 11(5):402–412. doi:10.1007/s11892-011-0213-z

    Article  Google Scholar 

  45. Rayat GR, Rajotte RV, Hering BJ, Binette TM, Korbutt GS (2003) In vitro and in vivo expression of Galalpha-(1,3)Gal on porcine islet cells is age dependent. J Endocrinol 177(1):127–135

    Article  CAS  Google Scholar 

  46. Bai L, Tuch BE, Hering B, Simpson AM (2002) Fetal pig beta cells are resistant to the toxic effects of human cytokines. Transplantation 73(5):714–722

    Article  CAS  Google Scholar 

  47. Nagaraju S, Bottino R, Wijkstrom M, Trucco M, Cooper DK (2015) Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation 22(1):7–19. doi:10.1111/xen.12130

    Article  Google Scholar 

  48. de Vos P, Wolters GH, van Schilfgaarde R (1994) Possible relationship between fibrotic overgrowth of alginate-polylysine-alginate microencapsulated pancreatic islets and the microcapsule integrity. Transplant Proc 26(2):782–783

    Google Scholar 

  49. Omori T, Nishida T, Komoda H, Fumimoto Y, Ito T, Sawa Y, Gao C, Nakatsu S, Shirakura R, Miyagawa S (2006) A study of the xenoantigenicity of neonatal porcine islet-like cell clusters (NPCC) and the efficiency of adenovirus-mediated DAF (CD55) expression. Xenotransplantation 13(5):455–464. doi:10.1111/j.1399-3089.2006.00335.x

    Article  Google Scholar 

  50. Rayat GR, Johnson ZA, Beilke JN, Korbutt GS, Rajotte RV, Gill RG (2003) The degree of phylogenetic disparity of islet grafts dictates the reliance on indirect CD4 T-cell antigen recognition for rejection. Diabetes 52(6):1433–1440

    Article  CAS  Google Scholar 

  51. Chitilian HV, Laufer TM, Stenger K, Shea S, Auchincloss H Jr (1998) The strength of cell-mediated xenograft rejection in the mouse is due to the CD4+ indirect response. Xenotransplantation 5(1):93–98

    Article  CAS  Google Scholar 

  52. Dufrane D, Goebbels RM, Saliez A, Guiot Y, Gianello P (2006) Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept. Transplantation 81(9):1345–1353. doi:10.1097/01.tp.0000208610.75997.20

    Article  Google Scholar 

  53. Kobayashi T, Harb G, Rajotte RV, Korbutt GS, Mallett AG, Arefanian H, Mok D, Rayat GR (2006) Immune mechanisms associated with the rejection of encapsulated neonatal porcine islet xenografts. Xenotransplantation 13(6):547–559. doi:10.1111/j.1399-3089.2006.00349.x

    Article  Google Scholar 

  54. Kobayashi T, Harb G, Rayat GR (2005) Prolonged survival of microencapsulated neonatal porcine islets in mice treated with a combination of anti-CD154 and anti-LFA-1 monoclonal antibodies. Transplantation 80(6):821–827

    Article  CAS  Google Scholar 

  55. Rayat GR, Gill RG (2005) Indefinite survival of neonatal porcine islet xenografts by simultaneous targeting of LFA-1 and CD154 or CD45RB. Diabetes 54(2):443–451

    Article  CAS  Google Scholar 

  56. Rayat GR, Rajotte RV, Ao Z, Korbutt GS (2000) Microencapsulation of neonatal porcine islets: protection from human antibody/complement-mediated cytolysis in vitro and long-term reversal of diabetes in nude mice. Transplantation 69(6):1084–1090

    Article  CAS  Google Scholar 

  57. Siebers U, Horcher A, Brandhorst H, Brandhorst D, Hering B, Federlin K, Bretzel RG, Zekorn T (1999) Analysis of the cellular reaction towards microencapsulated xenogeneic islets after intraperitoneal transplantation. J Mol Med 77(1):215–218

    Article  CAS  Google Scholar 

  58. Yi S, Hawthorne WJ, Lehnert AM, Ha H, Wong JK, van Rooijen N, Davey K, Patel AT, Walters SN, Chandra A, O'Connell PJ (2003) T cell-activated macrophages are capable of both recognition and rejection of pancreatic islet xenografts. J Immunol 170(5):2750–2758

    Article  CAS  Google Scholar 

  59. Omer A, Keegan M, Czismadia E, De Vos P, Van Rooijen N, Bonner-Weir S, Weir GC (2003) Macrophage depletion improves survival of porcine neonatal pancreatic cell clusters contained in alginate macrocapsules transplanted into rats. Xenotransplantation 10(3):240–251

    Article  Google Scholar 

  60. Andersen HU, Jorgensen KH, Egeberg J, Mandrup-Poulsen T, Nerup J (1994) Nicotinamide prevents interleukin-1 effects on accumulated insulin release and nitric oxide production in rat islets of Langerhans. Diabetes 43(6):770–777

    Article  CAS  Google Scholar 

  61. Tu J, Khoury P, Williams L, Tuch BE (2004) Comparison of fetal porcine aggregates of purified beta-cells versus islet-like cell clusters as a treatment of diabetes. Cell Transplant 13(5):525–534

    Article  Google Scholar 

  62. Solomon MF, Kuziel WA, Mann DA, Simeonovic CJ (2003) The role of chemokines and their receptors in the rejection of pig islet tissue xenografts. Xenotransplantation 10(2):164–177

    Article  Google Scholar 

  63. Koulmanda M, Laufer TM, Auchincloss H Jr, Smith RN (2004) Prolonged survival of fetal pig islet xenografts in mice lacking the capacity for an indirect response. Xenotransplantation 11(6):525–530. doi:10.1111/j.1399-3089.2004.00174.x

    Article  Google Scholar 

  64. Krook H, Hagberg A, Song Z, Landegren U, Wennberg L, Korsgren O (2002) A distinct Th1 immune response precedes the described Th2 response in islet xenograft rejection. Diabetes 51(1):79–86

    Article  CAS  Google Scholar 

  65. Foster JL, Williams G, Williams LJ, Tuch BE (2007) Differentiation of transplanted microencapsulated fetal pancreatic cells. Transplantation 83(11):1440–1448. doi:10.1097/01.tp.0000264555.46417.7d

    Article  Google Scholar 

  66. Vaithilingam V, Kollarikova G, Qi M, Lacik I, Oberholzer J, Guillemin GJ, Tuch BE (2011) Effect of prolonged gelling time on the intrinsic properties of barium alginate microcapsules and its biocompatibility. J Microencapsul 28(6):499–507. doi:10.3109/02652048.2011.586067

    Article  CAS  Google Scholar 

  67. Vaithilingam V, Oberholzer J, Guillemin GJ, Tuch BE (2010) The humanized NOD/SCID mouse as a preclinical model to study the fate of encapsulated human islets. The review of diabetic studies. Rev Diabet Stud 7(1):62–73. doi:10.1900/RDS.2010.7.62

    Article  Google Scholar 

  68. Candinas D, Belliveau S, Koyamada N, Miyatake T, Hechenleitner P, Mark W, Bach FH, Hancock WW (1996) T cell independence of macrophage and natural killer cell infiltration, cytokine production, and endothelial activation during delayed xenograft rejection. Transplantation 62(12):1920–1927

    Article  CAS  Google Scholar 

  69. Lin Y, Vandeputte M, Waer M (1997) Natural killer cell- and macrophage-mediated rejection of concordant xenografts in the absence of T and B cell responses. J Immunol 158(12):5658–5667

    CAS  Google Scholar 

  70. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12(11):1539–1546

    Article  CAS  Google Scholar 

  71. Byrd CA, Bornmann W, Erdjument-Bromage H, Tempst P, Pavletich N, Rosen N, Nathan CF, Ding A (1999) Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci U S A 96(10):5645–5650

    Article  CAS  Google Scholar 

  72. Vilcek J, Palombella VJ, Henriksen-DeStefano D, Swenson C, Feinman R, Hirai M, Tsujimoto M (1986) Fibroblast growth enhancing activity of tumor necrosis factor and its relationship to other polypeptide growth factors. J Exp Med 163(3):632–643

    Article  CAS  Google Scholar 

  73. Komoda H, Miyagawa S, Kubo T, Kitano E, Kitamura H, Omori T, Ito T, Matsuda H, Shirakura R (2004) A study of the xenoantigenicity of adult pig islets cells. Xenotransplantation 11(3):237–246. doi:10.1111/j.1399-3089.2004.00121.x

    Article  Google Scholar 

  74. Bennet W, Sundberg B, Lundgren T, Tibell A, Groth CG, Richards A, White DJ, Elgue G, Larsson R, Nilsson B, Korsgren O (2000) Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomolgus monkeys: protective effects of sCR1 and heparin. Transplantation 69(5):711–719

    Article  CAS  Google Scholar 

  75. Mandel TE, Dillon H, Koulmanda M (1995) The effect of a depleting anti-CD4 monoclonal antibody on T cells and fetal pig islet xenograft survival in various strains of mice. Transpl Immunol 3(3):265–272

    Article  CAS  Google Scholar 

  76. Simeonovic CJ, Ceredig R, Wilson JD (1990) Effect of GK1.5 monoclonal antibody dosage on survival of pig proislet xenografts in CD4+ T cell-depleted mice. Transplantation 49(5):849–856

    Article  CAS  Google Scholar 

  77. Wilson JD, Simeonovic CJ, Ting JH, Ceredig R (1989) Role of CD4+ T-lymphocytes in rejection by mice of fetal pig proislet xenografts. Diabetes 38(Suppl 1):217–219

    Article  Google Scholar 

  78. Benda B, Karlsson-Parra A, Ridderstad A, Korsgren O (1996) Xenograft rejection of porcine islet-like cell clusters in immunoglobulin- or Fc-receptor gamma-deficient mice. Transplantation 62(9):1207–1211

    Article  CAS  Google Scholar 

  79. Simeonovic CJ, McKenzie KU, Wilson JD, Zarb JC, Hodgkin PD (1998) Role of anti-donor antibody in the rejection of pig proislet xenografts in mice. Xenotransplantation 5(1):18–28

    Article  CAS  Google Scholar 

  80. Cui H, Tucker-Burden C, Cauffiel SM, Barry AK, Iwakoshi NN, Weber CJ, Safley SA (2009) Long-term metabolic control of autoimmune diabetes in spontaneously diabetic nonobese diabetic mice by nonvascularized microencapsulated adult porcine islets. Transplantation 88(2):160–169. doi:10.1097/TP.0b013e3181abbfc1

    Article  Google Scholar 

  81. Safley SA, Kapp LM, Tucker-Burden C, Hering B, Kapp JA, Weber CJ (2005) Inhibition of cellular immune responses to encapsulated porcine islet xenografts by simultaneous blockade of two different costimulatory pathways. Transplantation 79(4):409–418

    Article  CAS  Google Scholar 

  82. Hering BJ, Wijkstrom M, Graham ML, Hardstedt M, Aasheim TC, Jie T, Ansite JD, Nakano M, Cheng J, Li W, Moran K, Christians U, Finnegan C, Mills CD, Sutherland DE, Bansal-Pakala P, Murtaugh MP, Kirchhof N, Schuurman HJ (2006) Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med 12(3):301–303. doi:10.1038/nm1369

    Article  CAS  Google Scholar 

  83. Kirchhof N, Shibata S, Wijkstrom M, Kulick DM, Salerno CT, Clemmings SM, Heremans Y, Galili U, Sutherland DE, Dalmasso AP, Hering BJ (2004) Reversal of diabetes in non-immunosuppressed rhesus macaques by intraportal porcine islet xenografts precedes acute cellular rejection. Xenotransplantation 11(5):396–407. doi:10.1111/j.1399-3089.2004.00157.x

    Article  Google Scholar 

  84. Thompson P, Cardona K, Russell M, Badell IR, Shaffer V, Korbutt G, Rayat GR, Cano J, Song M, Jiang W, Strobert E, Rajotte R, Pearson T, Kirk AD, Larsen CP (2011) CD40-specific costimulation blockade enhances neonatal porcine islet survival in nonhuman primates. Am J Transplant 11(5):947–957. doi:10.1111/j.1600-6143.2011.03509.x

    Article  CAS  Google Scholar 

  85. Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, Jiang W, Bello-Laborn H, Hacquoil B, Strobert E, Gangappa S, Weber CJ, Pearson TC, Rajotte RV, Larsen CP (2006) Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med 12(3):304–306. doi:10.1038/nm1375

    Article  CAS  Google Scholar 

  86. Casu A, Bottino R, Balamurugan AN, Hara H, van der Windt DJ, Campanile N, Smetanka C, Cooper DK, Trucco M (2008) Metabolic aspects of pig-to-monkey (Macaca fascicularis) islet transplantation: implications for translation into clinical practice. Diabetologia 51(1):120–129. doi:10.1007/s00125-007-0844-4

    Article  CAS  Google Scholar 

  87. van der Windt DJ, Bottino R, Casu A, Campanile N, Smetanka C, He J, Murase N, Hara H, Ball S, Loveland BE, Ayares D, Lakkis FG, Cooper DK, Trucco M (2009) Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant 9(12):2716–2726. doi:10.1111/j.1600-6143.2009.02850.x

    Article  CAS  Google Scholar 

  88. Graham ML, Mutch LA, Rieke EF, Kittredge JA, Faig AW, DuFour TA, Munson JW, Zolondek EK, Hering BJ, Schuurman HJ (2011) Refining the high-dose streptozotocin-induced diabetic non-human primate model: an evaluation of risk factors and outcomes. Exp Biol Med 236(10):1218–1230. doi:10.1258/ebm.2011.011064

    Article  CAS  Google Scholar 

  89. Sun Y, Ma X, Zhou D, Vacek I, Sun AM (1996) Normalization of diabetes in spontaneously diabetic cynomolgus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 98(6):1417–1422. doi:10.1172/JCI118929

    Article  CAS  Google Scholar 

  90. Dufrane D, Goebbels RM, Gianello P (2010) Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation 90(10):1054–1062. doi:10.1097/TP.0b013e3181f6e267

    Article  Google Scholar 

  91. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506. doi:10.1182/blood-2007-02-069716

    Article  CAS  Google Scholar 

  92. English K (2013) Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 91(1):19–26. doi:10.1038/icb.2012.56

    Article  CAS  Google Scholar 

  93. English K, Barry FP, Field-Corbett CP, Mahon BP (2007) IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett 110(2):91–100. doi:10.1016/j.imlet.2007.04.001

    Article  CAS  Google Scholar 

  94. Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H (2010) Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation 90(12):1312–1320. doi:10.1097/TP.0b013e3181fed001

    Article  CAS  Google Scholar 

  95. Francois M, Romieu-Mourez R, Li M, Galipeau J (2012) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20(1):187–195. doi:10.1038/mt.2011.189

    Article  CAS  Google Scholar 

  96. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49. doi:10.1038/nm.1905

    Article  CAS  Google Scholar 

  97. English K, Barry FP, Mahon BP (2008) Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett 115(1):50–58. doi:10.1016/j.imlet.2007.10.002

    Article  CAS  Google Scholar 

  98. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150. doi:10.1016/j.stem.2007.11.014

    Article  CAS  Google Scholar 

  99. Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW, Deans RJ, McIntosh KR (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12(1):47–57. doi:10.1007/s11373-004-8183-7

    Article  CAS  Google Scholar 

  100. Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262(5):509–525. doi:10.1111/j.1365-2796.2007.01844.x

    Article  CAS  Google Scholar 

  101. Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35(5):1482–1490. doi:10.1002/eji.200425405

    Article  CAS  Google Scholar 

  102. Li YP, Paczesny S, Lauret E, Poirault S, Bordigoni P, Mekhloufi F, Hequet O, Bertrand Y, Ou-Yang JP, Stoltz JF, Miossec P, Eljaafari A (2008) Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J Immunol 180(3):1598–1608

    Article  CAS  Google Scholar 

  103. Perez-Basterrechea M, Obaya AJ, Meana A, Otero J, Esteban MM (2013) Cooperation by fibroblasts and bone marrow-mesenchymal stem cells to improve pancreatic rat-to-mouse islet xenotransplantation. PLoS One 8(8): e73526. doi:10.1371/journal.pone.0073526

    Article  CAS  Google Scholar 

  104. Wu H, Wen D, Mahato RI (2013) Third-party mesenchymal stem cells improved human islet transplantation in a humanized diabetic mouse model. Mol Ther 21(9):1778–1786. doi:10.1038/mt.2013.147

    Article  CAS  Google Scholar 

  105. Berman DM, Willman MA, Han D, Kleiner G, Kenyon NM, Cabrera O, Karl JA, Wiseman RW, O'Connor DH, Bartholomew AM, Kenyon NS (2010) Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes 59(10):2558–2568. doi:10.2337/db10-0136

    Article  CAS  Google Scholar 

  106. Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ (2009) Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58(8):1797–1806. doi:10.2337/db09-0317

    Article  CAS  Google Scholar 

  107. Longoni B, Szilagyi E, Quaranta P, Paoli GT, Tripodi S, Urbani S, Mazzanti B, Rossi B, Fanci R, Demontis GC, Marzola P, Saccardi R, Cintorino M, Mosca F (2010) Mesenchymal stem cells prevent acute rejection and prolong graft function in pancreatic islet transplantation. Diabetes Technol Ther 12(6):435–446. doi:10.1089/dia.2009.0154

    Article  CAS  Google Scholar 

  108. Mundra V, Wu H, Mahato RI (2013) Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation. PLoS One 8(10):e77591. doi:10.1371/journal.pone.0077591

    Article  CAS  Google Scholar 

  109. Park HS, Kim JW, Lee SH, Yang HK, Ham DS, Sun CL, Hong TH, Khang G, Park CG, Yoon KH (2015) Antifibrotic effect of rapamycin containing polyethylene glycol-coated alginate microcapsule in islet xenotransplantation. J Tissue Eng Regen Med. doi:10.1002/term.2029

    Google Scholar 

  110. Vaithilingam V, Kollarikova G, Qi M, Larsson R, Lacik I, Formo K, Marchese E, Oberholzer J, Guillemin GJ, Tuch BE (2014) Beneficial effects of coating alginate microcapsules with macromolecular heparin conjugates-in vitro and in vivo study. Tissue Eng Part A 20(1–2):324–334. doi:10.1089/ten.TEA.2013.0254

    Article  CAS  Google Scholar 

  111. Ma M, Chiu A, Sahay G, Doloff JC, Dholakia N, Thakrar R, Cohen J, Vegas A, Chen D, Bratlie KM, Dang T, York RL, Hollister-Lock J, Weir GC, Anderson DG (2013) Core-shell hydrogel microcapsules for improved islets encapsulation. Adv Healthcare Mater 2(5):667–672. doi:10.1002/adhm.201200341

    Article  CAS  Google Scholar 

  112. Tomei AA, Manzoli V, Fraker CA, Giraldo J, Velluto D, Najjar M, Pileggi A, Molano RD, Ricordi C, Stabler CL, Hubbell JA (2014) Device design and materials optimization of conformal coating for islets of Langerhans. Proc Natl Acad Sci U S A 111(29):10514–10519. doi:10.1073/pnas.1402216111

    Article  CAS  Google Scholar 

  113. Chen T, Yuan J, Duncanson S, Hibert ML, Kodish BC, Mylavaganam G, Maker M, Li H, Sremac M, Santosuosso M, Forbes B, Kashiwagi S, Cao J, Lei J, Thomas M, Hartono C, Sachs D, Markmann J, Sambanis A, Poznansky MC (2015) Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression. Am J Transplant 15(3):618–627. doi:10.1111/ajt.13049

    Article  CAS  Google Scholar 

  114. Park JB, Jeong JH, Lee M, Lee DY, Byun Y (2013) Xenotransplantation of exendin-4 gene transduced pancreatic islets using multi-component (alginate, poly-l-lysine, and polyethylene glycol) microcapsules for the treatment of type 1 diabetes mellitus. J Biomater Sci Polym Ed 24(18):2045–2057. doi:10.1080/09205063.2013.823071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Esther Yu-Tin Chen from the Department of Biomedical Engineering, University of California, Irvine for providing illustrations for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. T. Lakey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Krishnan, R. et al. (2017). Immunological Challenges Facing Translation of Alginate Encapsulated Porcine Islet Xenotransplantation to Human Clinical Trials. In: Opara, E. (eds) Cell Microencapsulation. Methods in Molecular Biology, vol 1479. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6364-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6364-5_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6362-1

  • Online ISBN: 978-1-4939-6364-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics