Skip to main content

Characterization of Functional Prophages in Clostridium difficile

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1476))

Abstract

Bacteriophages (phages) are present in almost, if not all ecosystems. Some of these bacterial viruses are present as latent “prophages,” either integrated within the chromosome of their host, or as episomal DNAs. Since prophages are ubiquitous throughout the bacterial world, there has been a sustained interest in trying to understand their contribution to the biology of their host. Clostridium difficile is no exception to that rule and with the recent release of hundreds of bacterial genome sequences, there has been a growing interest in trying to identify and classify these prophages. Besides their identification in bacterial genomes, there is also growing interest in determining the functionality of C. difficile prophages, i.e., their capacity to escape their host and reinfect a different strain, thereby promoting genomic evolution and horizontal transfer of genes through transduction, for example of antibiotic resistance genes. There is also some interest in using therapeutic phages to fight C. difficile infections.

The objective of this chapter is to share with the broader C. difficile research community the expertise we developed in the study of C. difficile temperate phages. In this chapter, we describe a general “pipeline” comprising a series of experiments that we use in our lab to identify, induce, isolate, propagate, and characterize prophages. Our aim is to provide readers with the necessary basic tools to start studying C. difficile phages.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brussow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602. doi:10.1128/MMBR.68.3.560-602.2004

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fortier L-C, Sekulovic O (2013) Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4:354–365. doi:10.4161/viru.24498

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oppenheim AB, Kobiler O, Stavans J et al (2005) Switches in bacteriophage lambda development. Annu Rev Genet 39:409–429. doi:10.1146/annurev.genet.39.073003.113656

    Article  CAS  PubMed  Google Scholar 

  4. Juhala R, Ford M, Duda R et al (2000) Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 299:27–51

    Article  CAS  PubMed  Google Scholar 

  5. Hayashi T, Makino K, Ohnishi M et al (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22

    Article  CAS  PubMed  Google Scholar 

  6. Eklund MW, Poysky FT, Reed SM, Smith CA (1971) Bacteriophage and the toxigenicity of Clostridium botulinum Type C. Science (New York, NY) 172:480–482. doi:10.1126/science.172.3982.480

    Article  CAS  Google Scholar 

  7. Hargreaves KR, Clokie MRJ (2014) Clostridium difficile phages: still difficult? Front Microbiol 5:184. doi:10.3389/fmicb.2014.00184

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goh S, Riley TV, Chang BJ (2005) Isolation and characterization of temperate bacteriophages of Clostridium difficile. Appl Environ Microbiol 71:1079–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Govind R, Fralick J, Rolfe R (2006) Genomic organization and molecular characterization of Clostridium difficile bacteriophage {Phi}CD119. J Bacteriol 188:2568–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hargreaves KR, Colvin HV, Patel KV et al (2013) Genetically diverse Clostridium difficile strains harboring abundant prophages in an estuarine environment. Appl Environ Microbiol 79:6236–6243. doi:10.1128/AEM.01849-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shan J, Patel KV, Hickenbotham PT et al (2012) Prophage carriage and diversity within clinically relevant strains of Clostridium difficile. Appl Environ Microbiol 78:6027–6034. doi:10.1128/AEM.01311-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hargreaves KR, Kropinski AM, Clokie MRJ (2014) What does the talking?: quorum sensing signalling genes discovered in a bacteriophage genome. PLoS One 9:e85131. doi:10.1371/journal.pone.0085131

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nale JY, Shan J, Hickenbotham PT et al (2012) Diverse temperate bacteriophage carriage in Clostridium difficile 027 strains. PLoS One 7:e37263. doi:10.1371/journal.pone.0037263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fortier L-C, Moineau S (2007) Morphological and genetic diversity of temperate phages in Clostridium difficile. Appl Environ Microbiol 73:7358–7366. doi:10.1128/AEM.00582-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sekulovic O, Garneau JR, Néron A, Fortier L-C (2014) Characterization of temperate phages infecting Clostridium difficile isolates of human and animal origins. Appl Environ Microbiol 80:2555–2563. doi:10.1128/AEM.00237-14

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sekulovic O, Meessen-Pinard M, Fortier L-C (2011) Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J Bacteriol 193:2726–2734. doi:10.1128/JB.00787-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meessen-Pinard M, Sekulovic O, Fortier L-C (2012) Evidence of in vivo prophage induction during Clostridium difficile infection. Appl Environ Microbiol 78:7662–7670. doi:10.1128/AEM.02275-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Horgan M, O’Sullivan O, Coffey A et al (2010) Genome analysis of the Clostridium difficile phage PhiCD6356, a temperate phage of the Siphoviridae family. Gene 462:34–43. doi:10.1016/j.gene.2010.04.010

    Article  CAS  PubMed  Google Scholar 

  19. Mayer MJ, Narbad A, Gasson MJ (2008) Molecular characterization of a Clostridium difficile bacteriophage and its cloned biologically active endolysin. J Bacteriol 190:6734–6740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Didelot X, Eyre D, Cule M et al (2012) Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol 13:R118. doi:10.1186/gb-2012-13-12-r118

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eyre DW, Fawley WN, Best EL et al (2013) Comparison of multilocus variable-number tandem-repeat analysis and whole-genome sequencing for investigation of Clostridium difficile transmission. J Clin Microbiol 51:4141–4149. doi:10.1128/JCM.01095-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eyre DW, Cule ML, Wilson DJ et al (2013) Diverse sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med 369:1195–1205. doi:10.1056/NEJMoa1216064

    Article  CAS  PubMed  Google Scholar 

  23. Hargreaves KR, Otieno JR, Thanki A et al (2015) As clear as mud? Determining the diversity and prevalence of prophages in the draft genomes of estuarine isolates of Clostridium difficile. Genome Biol Evol 7(7):1842–1855. doi:10.1093/gbe/evv094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fouts DE (2006) Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 34:5839–5851. doi:10.1093/nar/gkl732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bose M, Barber RD (2006) Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol (Gedrukt) 6:223–227

    CAS  Google Scholar 

  26. Lima-Mendez G, Van Helden J, Toussaint A, Leplae R (2008) Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics 24:863–865. doi:10.1093/bioinformatics/btn043

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Y, Liang Y, Lynch KH et al (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. doi:10.1093/nar/gkr485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akhter S, Aziz RK, Edwards RA (2012) PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 40:e126. doi:10.1093/nar/gks406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grose JH, Casjens SR (2014) Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468–470C:421–443. doi:10.1016/j.virol.2014.08.024

    Article  Google Scholar 

  30. Brussow H, Desiere F (2001) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39:213–222

    Article  CAS  PubMed  Google Scholar 

  31. Hargreaves KR, Flores CO, Lawley TD, Clokie MRJ (2014) Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen. mBio 5:e01045–13. doi:10.1128/mBio.01045-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rokney A, Kobiler O, Amir A et al (2008) Host responses influence on the induction of lambda prophage. Mol Microbiol 68:29–36. doi:10.1111/j.1365-2958.2008.06119.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ubeda C, Maiques E, Knecht E et al (2005) Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 56:836–844. doi:10.1111/j.1365-2958.2005.04584.x

    Article  CAS  PubMed  Google Scholar 

  34. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327. doi:10.1038/nrmicro2315

    Article  CAS  PubMed  Google Scholar 

  35. Fortier L-C, Moineau S (2009) Phage production and maintenance of stocks, including expected stock lifetimes. Methods Mol Biol 501:203–219. doi:10.1007/978-1-60327-164-6_19

    Article  CAS  PubMed  Google Scholar 

  36. Ackermann H-W, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157:1843–1849. doi:10.1007/s00705-012-1383-y

    Article  CAS  PubMed  Google Scholar 

  37. Ackermann H-W (2009) Basic phage electron microscopy. In: Kropinski AM, Clokie MRJ (eds) Bacteriophages: methods and protocols. Volume 1. Isolation, characterization, and interactions. Methods in molecular biology (Clifton, NJ). Humana Press, New York, pp 113–126

    Chapter  Google Scholar 

  38. Hargreaves KR, Kropinski AM, Clokie MR (2014) Bacteriophage behavioral ecology: how phages alter their bacterial host’s habits. Bacteriophage 4:e29866. doi:10.4161/bact.29866

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sekulovic O, Fortier L-C (2015) Global transcriptional response of Clostridium difficile carrying the ϕCD38 prophage. Appl Environ Microbiol 81:1364–1374. doi:10.1128/AEM.03656-14

    Article  PubMed  Google Scholar 

  40. Goh S, Chang BJ, Riley TV (2005) Effect of phage infection on toxin production by Clostridium difficile. J Med Microbiol 54:129–135

    Article  CAS  PubMed  Google Scholar 

  41. Govind R, Vediyappan G, Rolfe RD et al (2009) Bacteriophage-mediated toxin gene regulation in Clostridium difficile. J Virol 83:12037–12045. doi:10.1128/JVI.01256-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kutter E (2009) Phage host range and efficiency of plating. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: methods and protocols, vol 1. Humana Press, New York, pp 141–149

    Chapter  Google Scholar 

  43. Dhalluin A, Lemee L, Pestel-Caron M et al (2003) Genotypic differentiation of twelve Clostridium species by polymorphism analysis of the triosephosphate isomerase (tpi) gene. Syst Appl Microbiol 26:90–96

    Article  CAS  PubMed  Google Scholar 

  44. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. doi:10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  45. Spinelli S, Veesler D, Bebeacua C, Cambillau C (2014) Structures and host-adhesion mechanisms of lactococcal siphophages. Front Microbiol 5:3. doi:10.3389/fmicb.2014.00003

    Article  PubMed  PubMed Central  Google Scholar 

  46. Abedon ST (2011) Lysis from without. Bacteriophage 1:46–49. doi:10.4161/bact.1.1.13980

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis-Charles Fortier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sekulović, O., Fortier, LC. (2016). Characterization of Functional Prophages in Clostridium difficile . In: Roberts, A., Mullany, P. (eds) Clostridium difficile. Methods in Molecular Biology, vol 1476. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6361-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6361-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6359-1

  • Online ISBN: 978-1-4939-6361-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics