Skip to main content

Caloric Restriction and Dietary Treatments of Epilepsy: Mechanistic Insights for Drug Discovery

  • Protocol
  • First Online:
Antiepileptic Drug Discovery

Abstract

Based on the observation that fasting reduces the number and severity of convulsive seizures, a few different eating regimes have emerged to treat epilepsy. These are the ketogenic diet, medium-chain triglyceride regime, modified Atkins diet and low glycemic index treatment, all of which have been used clinically. These nutritional procedures are effective and have few adverse collateral actions. A related diet is caloric restriction, which can be accomplished by several methods. Caloric restriction has been shown to possess anticonvulsive and, most importantly, antiepileptogenic properties. But there are no clinical studies exploring if caloric restriction by itself reduces the number and severity of seizures. However, there is some data suggesting that caloric restriction improves the efficacy of the ketogenic and modified Atkins diets. Its mechanism(s) of action remain(s) mysterious, although several possibilities have been suggested. Each of its proposed mechanisms of action can be targeted for the discovery of drugs that prevent or modify epilepsy. This chapter briefly describes every one of the food modifications in current clinical use or that has been studied using animal models. Much evidence indicating that caloric restriction induced by food restriction or intermittent fasting is antiepileptic or antiepileptogenic is discussed. The possible mechanisms of action of the ketogenic diet and caloric restriction are presented in short. Lastly, a brief method for performing a type of caloric restriction is detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergqvist AG (2012) Long-term monitoring of the ketogenic diet: do’s and don’ts. Epilepsy Res 100:261–266

    Article  PubMed  Google Scholar 

  2. Jóźwiak S, Kossoff EH, Kotulska-Jóźwiak K (2011) Dietary treatment of epilepsy: rebirth of an ancient treatment. Neurol Neurochir Pol 45:370–378

    PubMed  Google Scholar 

  3. Kossoff EH, Wang HS (2013) Dietary therapies for epilepsy. Biomed J 36:2–8

    Article  PubMed  Google Scholar 

  4. Kossoff EH, Zupec-Kania BA, Amark PE, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R et al (2009) Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia 50:304–317

    Article  PubMed  Google Scholar 

  5. Gasior M, Rogawski MA, Hartman AL (2006) Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol 17:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kossoff EH, Rho JM (2009) Ketogenic diets: evidence for short- and long-term efficacy. Neurotherapeutics 6:406–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thio LL (2012) Hypothalamic hormones and metabolism. Epilepsy Res 100:245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bough KJ, Eagles DA (2001) Comparison of the anticonvulsant efficacies and neurotoxic effects of valproic acid, phenytoin, and the ketogenic diet. Epilepsia 42:1345–1353

    Article  CAS  PubMed  Google Scholar 

  9. Morrison PF, Pyzik PL, Hamdy R, Hartman AL, Kossoff EH (2009) The influence of concurrent anticonvulsants on the efficacy of the ketogenic diet. Epilepsia 50:1999–2001

    Article  CAS  PubMed  Google Scholar 

  10. Zarnowska I, Luszczki JJ, Zarnowski T, Buszewicz G, Madro R, Czuczwar SJ et al (2009) Pharmacodynamic and pharmacokinetic interactions between common antiepileptic drugs and acetone, the chief anticonvulsant ketone body elevated in the ketogenic diet in mice. Epilepsia 50:1132–1140

    Article  CAS  PubMed  Google Scholar 

  11. Hemingway C, Freeman JM, Pillas DJ, Pyzik PL (2001) The ketogenic diet: a 3- to 6-year follow-up of 150 children enrolled prospectively. Pediatrics 108:898–905

    Article  CAS  PubMed  Google Scholar 

  12. Kossoff EH, Pyzik PL, McGrogan JR, Rubenstein JE (2004) The impact of early versus late anticonvulsant reduction after ketogenic diet initiation. Epilepsy Behav 5:499–502

    Article  PubMed  Google Scholar 

  13. Rubenstein JE, Kossoff EH, Pyzik PL, Vining EP, McGrogan JR, Freeman JM (2005) Experience in the use of the ketogenic diet as early therapy. J Child Neurol 20:31–34

    Article  PubMed  Google Scholar 

  14. Wang HS, Lin KL (2013) Ketogenic diet: an early option for epilepsy treatment, instead of a last choice only. Biomed J 36:16–17

    Article  PubMed  Google Scholar 

  15. Yoon JR, Kim HD, Kang HC (2013) Lower fat and better quality diet therapy for children with pharmacoresistant epilepsy. Korean J Pediatr 56:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gano LB, Patel M, Rho JM (2014) Ketogenic diets, mitochondria, and neurological diseases. J Lipid Res 55:2211–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ruskin DN, Masino SA (2012) The nervous system and metabolic dysregulation: emerging evidence converges on ketogenic diet therapy. Front Neurosci 6:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miranda MJ, Turner Z, Magrath G (2012) Alternative diets to the classical ketogenic diet—can we be more liberal? Epilepsy Res 100:278–285

    Article  PubMed  Google Scholar 

  19. Musa-Veloso K (2004) Non-invasive detection of ketosis and its application in refractory epilepsy. Prostaglandins Leukot Essent Fatty Acids 70:329–335

    Article  CAS  PubMed  Google Scholar 

  20. van Delft R, Lambrechts D, Verschuure P, Hulsman J, Majoie M (2010) Blood beta-hydroxybutyrate correlates better with seizure reduction due to ketogenic diet than do ketones in the urine. Seizure 19:36–39

    Article  PubMed  Google Scholar 

  21. Greene AE, Todorova MT, Seyfried TN (2003) Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 86:529–537

    Article  CAS  PubMed  Google Scholar 

  22. Kawamura M Jr, Ruskin DN, Geiger JD, Boison D, Masino SA (2014) Ketogenic diet sensitizes glucose control of hippocampal excitability. J Lipid Res 55:2254–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mantis JG, Meidenbauer JJ, Zimick NC, Centeno NA, Seyfried TN (2014) Glucose reduces the anticonvulsant effects of the ketogenic diet in EL mice. Epilepsy Res 108:1137–1144

    Article  CAS  PubMed  Google Scholar 

  24. Meidenbauer JJ, Roberts MF (2014) Reduced glucose utilization underlies seizure protection with dietary therapy in epileptic EL mice. Epilepsy Behav 39:48–54

    Article  PubMed  Google Scholar 

  25. Yamada KA (2008) Calorie restriction and glucose regulation. Epilepsia 49:94–96

    Article  PubMed  Google Scholar 

  26. McPherson PA, McEneny J (2012) The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress. J Physiol Biochem 68:141–151

    Article  CAS  PubMed  Google Scholar 

  27. Amigo I, Kowaltowski AJ (2014) Dietary restriction in cerebral bioenergetics and redox state. Redox Biol 2:296–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hartman AL, Rubenstein JE, Kossoff EH (2013) Intermittent fasting: a “new” historical strategy for controlling seizures? Epilepsy Res 104:275–279

    Article  PubMed  Google Scholar 

  29. Yuen AW, Sander JW (2014) Rationale for using intermittent calorie restriction as a dietary treatment for drug resistant epilepsy. Epilepsy Behav 33:110–114

    Article  PubMed  Google Scholar 

  30. Dhamija R, Eckert S, Wirrell E (2013) Ketogenic diet. Can J Neurol Sci 40:158–167

    Article  PubMed  Google Scholar 

  31. Kessler SK, Neal EG, Camfield CS, Kossoff EH (2011) Dietary therapies for epilepsy: future research. Epilepsy Behav 22:17–22

    Article  PubMed  Google Scholar 

  32. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G et al (2009) A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia 50:1109–1117

    Article  PubMed  Google Scholar 

  33. Wibisono C, Rowe N, Beavis E, Kepreotes H, Mackie FE, Lawson JA et al (2015) Ten-year single-center experience of the ketogenic diet: factors influencing efficacy, tolerability, and compliance. J Pediatr 166:1030–1036

    Article  PubMed  Google Scholar 

  34. Likhodii SS, Musa K, Mendonca A, Dell C, Burnham WM, Cunnane SC (2000) Dietary fat, ketosis, and seizure resistance in rats on the ketogenic diet. Epilepsia 41:1400–1410

    Article  CAS  PubMed  Google Scholar 

  35. Chang P, Terbach N, Plant N, Chen PE, Walker MC, Williams RS (2013) Seizure control by ketogenic diet-associated medium chain fatty acids. Neuropharmacology 69:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang P, Zuckermann AM, Williams S, Close AJ, Cano-Jaimez M, McEvoy JP et al (2015) Seizure control by derivatives of medium chain fatty acids associated with the ketogenic diet show novel branching-point structure for enhanced potency. J Pharmacol Exp Ther 352:43–52

    Article  PubMed  CAS  Google Scholar 

  37. Gama IR, Trindade-Filho EM, Oliveira SL, Bueno NB, Melo IT, Cabral-Junior CR et al (2015) Effects of ketogenic diets on the occurrence of pilocarpine-induced status epilepticus of rats. Metab Brain Dis 30:93–98

    Article  CAS  PubMed  Google Scholar 

  38. McDonald TS, Tan KN, Hodson MP, Borges K (2014) Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides. J Cereb Blood Flow Metab 34:153–160

    Article  CAS  PubMed  Google Scholar 

  39. Wlaź P, Socała K, Nieoczym D, Łuszczki JJ, Zarnowska I, Zarnowski T et al (2012) Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacology 62:1882–1889

    Article  PubMed  CAS  Google Scholar 

  40. Wlaź P, Socała K, Nieoczym D, Żarnowski T, Żarnowska I, Czuczwar SJ et al (2015) Acute anticonvulsant effects of capric acid in seizure tests in mice. Prog Neuropsychopharmacol Biol Psychiatry 57:110–116

    Article  PubMed  CAS  Google Scholar 

  41. Socała K, Nieoczym D, Pieróg M, Wlaź P (2015) Role of the adenosine system and glucose restriction in the acute anticonvulsant effect of caprylic acid in the 6 Hz psychomotor seizure test in mice. Prog Neuropsychopharmacol Biol Psychiatry 57:44–51

    Article  PubMed  CAS  Google Scholar 

  42. Hashim SA, VanItallie TB (2014) Ketone body therapy: from the ketogenic diet to the oral administration of ketone ester. J Lipid Res 55:1818–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bough K (2008) Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet. Epilepsia 49:91–93

    Article  PubMed  PubMed Central  Google Scholar 

  44. Danial NN, Hartman AL, Stafstrom CE, Thio LL (2013) How does the ketogenic diet work? Four potential mechanisms. J Child Neurol 28:1027–1033

    Article  PubMed  PubMed Central  Google Scholar 

  45. Masino SA, Rho JM (2012) Mechanisms of ketogenic diet action. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies, 4th edn. National Center for Biotechnology Information, Bethesda, Available via NCBI, http://www.ncbi.nlm.nih.gov/books/NBK98219/. Accessed 09 Jun 2015

    Google Scholar 

  46. Bielohuby M, Menhofer D, Kirchner H, Stoehr BJ, Müller TD, Stock P et al (2011) Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein. Am J Physiol Endocrinol Metab 300:E65–E76

    Article  CAS  PubMed  Google Scholar 

  47. Bough KJ, Yao SG, Eagles DA (2000) Higher ketogenic diet ratios confer protection from seizures without neurotoxicity. Epilepsy Res 38:15–25

    Article  CAS  PubMed  Google Scholar 

  48. Nylen K, Likhodii S, Abdelmalik PA, Clarke J, Burnham WM (2005) A comparison of the ability of a 4:1 ketogenic diet and a 6.3:1 ketogenic diet to elevate seizure thresholds in adult and young rats. Epilepsia 46:1198–1204

    Article  CAS  PubMed  Google Scholar 

  49. Seo JH, Lee YM, Lee JS, Kang HC, Kim HD (2007) Efficacy and tolerability of the ketogenic diet according to lipid:nonlipid ratios—comparison of 3:1 with 4:1 diet. Epilepsia 48:801–805

    Article  CAS  PubMed  Google Scholar 

  50. Raju KN, Gulati S, Kabra M, Agarwala A, Sharma S, Pandey RM et al (2011) Efficacy of 4:1 (classic) versus 2.5:1 ketogenic ratio diets in refractory epilepsy in young children: a randomized open labeled study. Epilepsy Res 96:96–100

    Article  CAS  PubMed  Google Scholar 

  51. Muzykewicz DA, Lyczkowski DA, Memon N, Conant KD, Pfeifer HH, Thiele EA (2009) Efficacy, safety, and tolerability of the low glycemic index treatment in pediatric epilepsy. Epilepsia 50:1118–1126

    Article  CAS  PubMed  Google Scholar 

  52. Eagles DA (2008) Design of dietary treatment: humans versus rodents. Epilepsia 49:61–63

    Article  PubMed  Google Scholar 

  53. Cerqueira FM, Kowaltowski AJ (2010) Commonly adopted caloric restriction protocols often involve malnutrition. Ageing Res Rev 9:424–430

    Article  PubMed  Google Scholar 

  54. Rizza W, Veronese N, Fontana L (2014) What are the roles of calorie restriction and diet quality in promoting healthy longevity? Ageing Res Rev 13:38–45

    Article  PubMed  Google Scholar 

  55. Anson RM, Jones B, de Cabod R (2005) The diet restriction paradigm: a brief review of the effects of every-other-day feeding. Age (Dordr) 27:17–25

    Article  CAS  Google Scholar 

  56. Libert S, Guarente L (2013) Metabolic and neuropsychiatric effects of calorie restriction and sirtuins. Annu Rev Physiol 75:669–684

    Article  CAS  PubMed  Google Scholar 

  57. Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19:181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Masoro EJ (2009) Caloric restriction-induced life extension of rats and mice: a critique of proposed mechanisms. Biochim Biophys Acta 1790:1040–1048

    Article  CAS  PubMed  Google Scholar 

  59. Testa G, Biasi F, Poli G, Chiarpotto E (2014) Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des 20:2950–2977

    Article  CAS  PubMed  Google Scholar 

  60. Bough KJ, Valiyil R, Han FT, Eagles DA (1999) Seizure resistance is dependent upon age and calorie restriction in rats fed a ketogenic diet. Epilepsy Res 35:21–28

    Article  CAS  PubMed  Google Scholar 

  61. Greene AE, Todorova MT, McGowan R, Seyfried TN (2001) Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia 42:1371–1378

    Article  CAS  PubMed  Google Scholar 

  62. Bough KJ, Schwartzkroin PA, Rho JM (2003) Calorie restriction and ketogenic diet diminish neuronal excitability in rat dentate gyrus in vivo. Epilepsia 44:752–760

    Article  PubMed  Google Scholar 

  63. Azarbar A, McIntyre DC, Gilby KL (2010) Caloric restriction alters seizure disposition and behavioral profiles in seizure-prone (fast) versus seizure-resistant (slow) rats. Behav Neurosci 124:106–114

    Article  PubMed  Google Scholar 

  64. Phillips-Farfán BV, Rubio Osornio M del C, Custodio Ramírez V, Paz Tres C, Carvajal Aguilera KG (2015) Caloric restriction protects against electrical kindling of the amygdala by inhibiting the mTOR signaling pathway. Front Cell Neurosci 9:90

    Google Scholar 

  65. Parinejad N, Keshavarzi S, Movahedin M, Raza M (2009) Behavioral and histological assessment of the effect of intermittent feeding in the pilocarpine model of temporal lobe epilepsy. Epilepsy Res 86:54–65

    Article  PubMed  Google Scholar 

  66. Hartman AL, Zheng X, Bergbower E, Kennedy M, Hardwick JM (2010) Seizure tests distinguish intermittent fasting from the ketogenic diet. Epilepsia 51:1395–1402

    Article  PubMed  PubMed Central  Google Scholar 

  67. Karimzadeh F, Jafarian M, Gharakhani M, Razeghi Jahromi S, Mohamadzadeh E, Khallaghi B et al (2013) Behavioural and histopathological assessment of the effects of periodic fasting on pentylenetetrazol-induced seizures in rats. Nutr Neurosci 16:147–152

    Article  CAS  PubMed  Google Scholar 

  68. Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A et al (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A 100:6216–6220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bruce-Keller AJ, Umberger G, McFall R, Mattson MP (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann Neurol 45:8–15

    Article  CAS  PubMed  Google Scholar 

  70. Contestabile A, Ciani E, Contestabile A (2004) Dietary restriction differentially protects from neurodegeneration in animal models of excitotoxicity. Brain Res 1002:162–166

    Article  CAS  PubMed  Google Scholar 

  71. Kumar S, Parkash J, Kataria H, Kaur G (2009) Interactive effect of excitotoxic injury and dietary restriction on neurogenesis and neurotrophic factors in adult male rat brain. Neurosci Res 65:367–374

    Article  CAS  PubMed  Google Scholar 

  72. Sharma S, Kaur G (2005) Neuroprotective potential of dietary restriction against kainate-induced excitotoxicity in adult male Wistar rats. Brain Res Bull 67:482–491

    Article  CAS  PubMed  Google Scholar 

  73. Youssef FF, Ramchandani J, Manswell S, McRae A (2008) Adult-onset calorie restriction attenuates kainic acid excitotoxicity in the rat hippocampal slice. Neurosci Lett 431:118–122

    Article  CAS  PubMed  Google Scholar 

  74. Zeier Z, Madorsky I, Xu Y, Ogle WO, Notterpek L, Foster TC (2011) Gene expression in the hippocampus: regionally specific effects of aging and caloric restriction. Mech Ageing Dev 132:8–19

    Article  CAS  PubMed  Google Scholar 

  75. Bough KJ, Rho JM (2007) Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 48:43–58

    Article  CAS  PubMed  Google Scholar 

  76. Giordano C, Marchiò M, Timofeeva E, Biagini G (2014) Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 5:63

    Article  PubMed  PubMed Central  Google Scholar 

  77. Likhodii S, Nylen K, Burnham WM (2008) Acetone as an anticonvulsant. Epilepsia 49:83–86

    Article  PubMed  Google Scholar 

  78. McNally MA, Hartman AL (2012) Ketone bodies in epilepsy. J Neurochem 121:28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Newman JC, Verdin E (2014) Ketone bodies as signaling metabolites. Trends Endocrinol Metab 25:42–52

    Article  CAS  PubMed  Google Scholar 

  80. Rahman M, Muhammad S, Khan MA, Chen H, Ridder DA, Müller-Fielitz H et al (2014) The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat Commun 5:3944

    Article  CAS  PubMed  Google Scholar 

  81. Laeger T, Metges CC, Kuhla B (2010) Role of beta-hydroxybutyric acid in the central regulation of energy balance. Appetite 54:450–455

    Article  CAS  PubMed  Google Scholar 

  82. Offermanns S, Schwaninger M (2015) Nutritional or pharmacological activation of HCA(2) ameliorates neuroinflammation. Trends Mol Med 21:245–255

    Article  CAS  PubMed  Google Scholar 

  83. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N et al (2013) Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214

    Article  CAS  PubMed  Google Scholar 

  84. Klein C, Kemmel V, Taleb O, Aunis D, Maitre M (2009) Pharmacological doses of gamma-hydroxybutyrate (GHB) potentiate histone acetylation in the rat brain by histone deacetylase inhibition. Neuropharmacology 57:137–147

    Article  CAS  PubMed  Google Scholar 

  85. Auvin S (2012) Fatty acid oxidation and epilepsy. Epilepsy Res 100:224–228

    Article  CAS  PubMed  Google Scholar 

  86. Cunnane SC (2004) Metabolism of polyunsaturated fatty acids and ketogenesis: an emerging connection. Prostaglandins Leukot Essent Fatty Acids 70:237–241

    Article  CAS  PubMed  Google Scholar 

  87. Pifferi F, Tremblay S, Plourde M, Tremblay-Mercier J, Bentourkia M, Cunnane SC (2008) Ketones and brain function: possible link to polyunsaturated fatty acids and availability of a new brain PET tracer, 11C-acetoacetate. Epilepsia 49:76–79

    Article  CAS  PubMed  Google Scholar 

  88. Veech RL (2004) The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 70:309–319

    Article  CAS  PubMed  Google Scholar 

  89. Lutas A, Yellen G (2013) The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci 36:32–40

    Article  CAS  PubMed  Google Scholar 

  90. Masino SA, Kawamura M Jr, Ruskin DN, Geiger JD, Boison D (2012) Purines and neuronal excitability: links to the ketogenic diet. Epilepsy Res 100:229–238

    Article  CAS  PubMed  Google Scholar 

  91. Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM et al (2006) 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9:1382–1387

    Article  CAS  PubMed  Google Scholar 

  92. Stafstrom CE, Ockuly JC, Murphree L, Valley MT, Roopra A, Sutula TP (2009) Anticonvulsant and antiepileptic actions of 2-deoxy-D-glucose in epilepsy models. Ann Neurol 65:435–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stafstrom CE, Roopra A, Sutula TP (2008) Seizure suppression via glycolysis inhibition with 2-deoxy-D-glucose (2DG). Epilepsia 49:97–100

    Article  PubMed  Google Scholar 

  94. Ding Y, Wang S, Jiang Y, Yang Y, Zhang M, Guo Y et al (2013) Fructose-1,6-diphosphate protects against epileptogenesis by modifying cation-chloride co-transporters in a model of amygdaloid-kindling temporal epilepticus. Brain Res 1539:87–94

    Article  CAS  PubMed  Google Scholar 

  95. Ding Y, Wang S, Zhang MM, Guo Y, Yang Y, Weng SQ et al (2010) Fructose-1,6-diphosphate inhibits seizure acquisition in fast hippocampal kindling. Neurosci Lett 477:33–36

    Article  CAS  PubMed  Google Scholar 

  96. Lian XY, Khan FA, Stringer JL (2007) Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats. J Neurosci 27:12007–12011

    Article  CAS  PubMed  Google Scholar 

  97. Lian XY, Xu K, Stringer JL (2008) Oral administration of fructose-1,6-diphosphate has anticonvulsant activity. Neurosci Lett 446:75–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stringer JL, Xu K (2008) Possible mechanisms for the anticonvulsant activity of fructose-1,6-diphosphate. Epilepsia 49:101–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Borges K, Sonnewald U (2012) Triheptanoin—a medium chain triglyceride with odd chain fatty acids: a new anaplerotic anticonvulsant treatment? Epilepsy Res 100:239–244

    Article  CAS  PubMed  Google Scholar 

  100. Hadera MG, Smeland OB, McDonald TS, Tan KN, Sonnewald U, Borges K (2014) Triheptanoin partially restores levels of tricarboxylic acid cycle intermediates in the mouse pilocarpine model of epilepsy. J Neurochem 129:107–119

    Article  CAS  PubMed  Google Scholar 

  101. Kovac S, Abramov AY, Walker MC (2013) Energy depletion in seizures: anaplerosis as a strategy for future therapies. Neuropharmacology 69:96–104

    Article  CAS  PubMed  Google Scholar 

  102. Yudkoff M, Daikhin Y, Melø TM, Nissim I, Sonnewald U, Nissim I (2007) The ketogenic diet and brain metabolism of amino acids: relationship to the anticonvulsant effect. Annu Rev Nutr 27:415–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bough KJ, Paquet M, Paré JF, Hassel B, Smith Y, Hall RA et al (2007) Evidence against enhanced glutamate transport in the anticonvulsant mechanism of the ketogenic diet. Epilepsy Res 74:232–236

    Article  CAS  PubMed  Google Scholar 

  104. Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C et al (2010) Metabolic control of vesicular glutamate transport and release. Neuron 68:99–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McDaniel SS, Rensing NR, Thio LL, Yamada KA, Wong M (2011) The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 52:e7–e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Galanopoulou AS, Gorter JA, Cepeda C (2012) Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 53:1119–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lasarge CL, Danzer SC (2014) Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation. Front Mol Neurosci 7:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wong M (2013) Mammalian target of rapamycin (mTOR) pathways in neurological diseases. Biomed J 36:40–50

    Article  PubMed  Google Scholar 

  109. Mahoney LB, Denny CA, Seyfried TN (2006) Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids Health Dis 5:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Cheng CM, Hicks K, Wang J, Eagles DA, Bondy CA (2004) Caloric restriction augments brain glutamic acid decarboxylase-65 and -67 expression. J Neurosci Res 77:270–276

    Article  CAS  PubMed  Google Scholar 

  111. Cheng CM, Kelley B, Wang J, Strauss D, Eagles DA, Bondy CA (2003) A ketogenic diet increases brain insulin-like growth factor receptor and glucose transporter gene expression. Endocrinology 144:2676–2682

    Article  CAS  PubMed  Google Scholar 

  112. Eagles DA, Boyd SJ, Kotak A, Allan F (2003) Calorie restriction of a high carbohydrate diet elevates the threshold of PTZ-induced seizures to values equal to those seen with a ketogenic diet. Epilepsy Res 54:41–52

    Article  CAS  PubMed  Google Scholar 

  113. Linard B, Ferrandon A, Koning E, Nehlig A, Raffo E (2010) Ketogenic diet exhibits neuroprotective effects in hippocampus but fails to prevent epileptogenesis in the lithium-pilocarpine model of mesial temporal lobe epilepsy in adult rats. Epilepsia 51:1829–1836

    Article  CAS  PubMed  Google Scholar 

  114. Raffo E, François J, Ferrandon A, Koning E, Nehlig A (2008) Calorie-restricted ketogenic diet increases thresholds to all patterns of pentylenetetrazol-induced seizures: critical importance of electroclinical assessment. Epilepsia 49:320–328

    Article  CAS  PubMed  Google Scholar 

  115. Hipkiss AR (2007) Dietary restriction, glycolysis, hormesis and ageing. Biogerontology 8:221–224

    Article  CAS  PubMed  Google Scholar 

  116. Kalapos MP (2007) Can ageing be prevented by dietary restriction? Mech Ageing Dev 128:227–228

    Article  CAS  PubMed  Google Scholar 

  117. Martin B, Pearson M, Brenneman R, Golden E, Keselman A, Iyun T et al (2008) Conserved and differential effects of dietary energy intake on the hippocampal transcriptomes of females and males. PLoS One 3:e2398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Poplawski MM, Mastaitis JW, Yang XJ, Mobbs CV (2010) Hypothalamic responses to fasting indicate metabolic reprogramming away from glycolysis toward lipid oxidation. Endocrinology 151:5206–5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dupuis N, Curatolo N, Benoist JF, Auvin S (2015) Ketogenic diet exhibits anti-inflammatory properties. Epilepsia 56:e95–e98

    Article  CAS  PubMed  Google Scholar 

  120. Redman LM, Ravussin E (2011) Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal 14:275–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rogers AE (1979) Nutrition. In: Baker HJ, Lindsey JR, Weisbroth SH (eds) The laboratory rat, 1st edn. Academic, Orlando

    Google Scholar 

  122. Allmann-Iselin I (2000) Husbandry. In: Krinke GJ (ed) The laboratory rat, 1st edn. Academic, London

    Google Scholar 

  123. Dutton SB, Escayg A (2008) Genetic influences on ketogenic diet efficacy. Epilepsia 49:67–69

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sohal RS, Forster MJ (2014) Caloric restriction and the aging process: a critique. Free Radic Biol Med 73:366–382

    Article  CAS  PubMed  Google Scholar 

  125. Sharma N, Castorena CM, Cartee GD (2012) Tissue-specific responses of IGF-1/insulin and mTOR signaling in calorie restricted rats. PLoS One 7:e38835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Appleton DB, DeVivo DC (1974) An animal model for the ketogenic diet. Epilepsia 15:211–227

    Article  CAS  PubMed  Google Scholar 

  127. Asrih M, Altirriba J, Rohner-Jeanrenaud F, Jornayvaz FR (2015) Ketogenic diet impairs FGF21 signaling and promotes differential inflammatory responses in the liver and white adipose tissue. PLoS One 10:e0126364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Badman MK, Kennedy AR, Adams AC, Pissios P, Maratos-Flier E (2009) A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss. Am J Physiol Endocrinol Metab 297:E1197–E1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bielohuby M, Sisley S, Sandoval D, Herbach N, Zengin A, Fischereder M et al (2013) Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets. Am J Physiol Endocrinol Metab 305:E1059–E1070

    Article  CAS  PubMed  Google Scholar 

  130. Ellenbroek JH, van Dijck L, Töns HA, Rabelink TJ, Carlotti F, Ballieux BE et al (2014) Long-term ketogenic diet causes glucose intolerance and reduced β- and α-cell mass but no weight loss in mice. Am J Physiol Endocrinol Metab 306:E552–E558

    Article  CAS  PubMed  Google Scholar 

  131. Garbow JR, Doherty JM, Schugar RC, Travers S, Weber ML, Wentz AE et al (2011) Hepatic steatosis, inflammation, and ER stress in mice maintained long term on a very low-carbohydrate ketogenic diet. Am J Physiol Gastrointest Liver Physiol 300:G956–G967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jelinek D, Castillo JJ, Arora SL, Richardson LM, Garver WS (2013) A high-fat diet supplemented with fish oil improves metabolic features associated with type 2 diabetes. Nutrition 29:1159–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Murata Y, Nishio K, Mochiyama T, Konishi M, Shimada M, Ohta H et al (2013) Fgf21 impairs adipocyte insulin sensitivity in mice fed a low-carbohydrate, high-fat ketogenic diet. PLoS One 8:e6933

    Google Scholar 

  134. Kossoff EH, Turner Z, Bergey GK (2007) Home-guided use of the ketogenic diet in a patient for more than 20 years. Pediatr Neurol 36:424–425

    Article  PubMed  Google Scholar 

  135. National Research Council (US) Committee on Recognition and Alleviation of Distress in Laboratory Animals (2008) Avoiding, minimizing, and alleviating distress. In: Recognition and alleviation of distress in laboratory animals, 1st edn. National Academies Press, Washington DC. Available via NCBI. http://www.ncbi.nlm.nih.gov/books/NBK4039/. Accessed 13 Aug 2015

  136. Bate ST, Clark RA (2014) Experimental design. In: The design and statistical analysis of animal experiments, 1st edn. Cambridge University Press, New York

    Google Scholar 

  137. Festing MF, Altman DG (2002) Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J 43:244–258

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan V. Phillips Farfán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Aguilera, K.G.C., Farfán, B.V.P. (2016). Caloric Restriction and Dietary Treatments of Epilepsy: Mechanistic Insights for Drug Discovery. In: Talevi, A., Rocha, L. (eds) Antiepileptic Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6355-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6355-3_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6353-9

  • Online ISBN: 978-1-4939-6355-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics