Skip to main content

Glutamate Receptors as Targets for Novel Antiepileptic Drug Therapy

  • Protocol
  • First Online:
Antiepileptic Drug Discovery

Abstract

In recent years, extensive research has been directed towards the development of novel therapeutic targets in epilepsy. A number of studies have reported that glutamate plays an important role in seizure generation and spread. Glutamate is the predominant excitatory neurotransmitter in the brain, exerting its action through ionotropic and metabotropic receptors. Notably, a significant increase of extracellular glutamate release was observed in hippocampus during the ictal, postictal, and interictal period of patients with pharmacoresistant epilepsy undergoing surgery (During and Spencer, Lancet 341:1607–1610, 1993; Cavus et al., Epilepsia 49:1358–1366, 2008). These results indicate a strong association between increased glutamate and epileptiform activity. The chronic increase in extracellular glutamate release favors neuronal hyperexcitability and subsequent neuronal damage. Thus, the pharmacological blockade of glutamatergic signaling represents an attractive alternative for the control of seizures and neuroprotection. In particular, glutamate receptors are attractive targets for novel antiepileptic drugs because different studies have demonstrated that its agonists and antagonists reduce excessive excitatory responses providing neuroprotection and causing seizure suppression. We provide a brief description of the glutamate agonists and antagonists with potential effects on these receptors and the results obtained in both preclinical models of epilepsy and during clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  CAS  PubMed  Google Scholar 

  2. Cavus I, Pan JW, Hetherington HP et al (2008) Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients. Epilepsia 49:1358–1366

    Article  PubMed  Google Scholar 

  3. Traynelis SF, Wollmuth LP, McBain CJ et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kew JNC, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 179:4–29

    Article  CAS  Google Scholar 

  5. Mayer ML, Armstrong N (2004) Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66:161–181

    Article  CAS  PubMed  Google Scholar 

  6. Stelzer A, Slater NT, ten Bruggencate G (1987) Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy. Nature 326:698–701

    Article  CAS  PubMed  Google Scholar 

  7. Kamphuis W, De Rijk TC, Talamini LM, Lopes da Silva FH (1994) Rat hippocampal kindling induces changes in the glutamate receptor mRNA expression patterns in dentate granule neurons. Eur J Neurosci 6:1119–1127

    Article  CAS  PubMed  Google Scholar 

  8. Federico P, MacVicar BA (1996) Imaging the induction and spread of seizure activity in the isolated brain of the guinea pig: the roles of GABA and glutamate receptors. J Neurophysiol 76:3471–3492

    CAS  PubMed  Google Scholar 

  9. Prince HK, Conn PJ, Blackstone CD et al (1995) Down-regulation of AMPA receptor subunit GluR2 in amygdaloid kindling. J Neurochem 64:462–465

    Article  CAS  PubMed  Google Scholar 

  10. Geddes JW, Cahan LD, Cooper SM et al (1990) Altered distribution of excitatory amino acid receptors in temporal lobe epilepsy. Exp Neurol 108:214–220

    Article  CAS  PubMed  Google Scholar 

  11. Hosford DA, Crain BJ, Cao Z et al (1991) Increased AMPA-sensitive quisqualate receptor binding and reduced NMDA receptor binding in epileptic human hippocampus. J Neurosci 11:428–434

    CAS  PubMed  Google Scholar 

  12. McDonald JW, Garofalo EA, Hood T et al (1991) Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy. Ann Neurol 29:529–541

    Article  CAS  PubMed  Google Scholar 

  13. Brines ML, Sundaresan S, Spencer DD, de Lanerolle NC (1997) Quantitative autoradiographic analysis of ionotropic glutamate receptor subtypes in human temporal lobe epilepsy: up-regulation in reorganized epileptogenic hippocampus. Eur J Neurosci 9:2035–2044

    Article  CAS  PubMed  Google Scholar 

  14. Zilles K, Qü MS, Köhling R, Speckmann EJ (1999) Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography. Neuroscience 94:1051–1061

    Article  CAS  PubMed  Google Scholar 

  15. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–62

    CAS  PubMed  Google Scholar 

  16. Turski WA, Urbanska E, Dziki M et al (1990) Excitatory amino acid antagonists protect mice against seizures induced by bicuculline. Brain Res 514:131–134

    Article  CAS  PubMed  Google Scholar 

  17. Czuczwar SJ, Meldrum B (1982) Protection against chemically induced seizures by 2-amino-7-phosphonoheptanoic acid. Eur J Pharmacol 83:335–338

    Article  CAS  PubMed  Google Scholar 

  18. Aldinio C, French ED, Schwarcz R (1983) The effects of intrahippocampal ibotenic acid and their blockade by (−) 2-amino-7-phosphonoheptanoic acid: morphological and electroencephalographical analysis. Exp Brain Res 51:36–44

    Article  CAS  PubMed  Google Scholar 

  19. Czuczwar SJ, Frey HH, Löscher W (1985) Antagonism of N-methyl-D, L-aspartic acid-induced convulsions by antiepileptic drugs and other agents. Eur J Pharmacol 108:273–280

    Article  CAS  PubMed  Google Scholar 

  20. Czuczwar SJ, Cavalheiro EA, Turski L et al (1985) Phosphonic analogues of excitatory amino acids raise the threshold for maximal electroconvulsions in mice. Neurosci Res 3:86–90

    Article  CAS  PubMed  Google Scholar 

  21. Croucher M, Collins J, Meldrum B (1982) Anticonvulsant action of excitatory amino acid antagonists. Science 216:899–901

    Article  CAS  PubMed  Google Scholar 

  22. Morales-Villagrán A, Ureña-Guerrero ME, Tapia R (1996) Protection by NMDA receptor antagonists against seizures induced by intracerebral administration of 4-aminopyridine. Eur J Pharmacol 305:87–93

    Article  PubMed  Google Scholar 

  23. Ghasemi M, Schachter SC (2011) The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 22:617–640

    Article  PubMed  Google Scholar 

  24. Eblen F, Löschmann PA, Wüllner U et al (1996) Effects of 7-nitroindazole, NG-nitro-L-arginine, and D-CPPene on harmaline-induced postural tremor, N-methyl-D-aspartate-induced seizures, and lisuride-induced rotations in rats with nigral 6-hydroxydopamine lesions. Eur J Pharmacol 299:9–16

    Article  CAS  PubMed  Google Scholar 

  25. Kleinrok Z, Turski WA, Czuczwar SJ (1995) Excitatory amino acid antagonists and the anticonvulsive activity of conventional antiepileptic drugs. Pol J Pharmacol 47:247–252

    CAS  PubMed  Google Scholar 

  26. Assi AA (2001) N6-cyclohexyladenosine and 3-(2-carboxypiperazine-4-yl)-1-propenyl-1-phosphonic acid enhance the effect of antiepileptic drugs against induced seizures in mice. J Pharm Pharm Sci 4:42–51

    CAS  PubMed  Google Scholar 

  27. Schmutz M, Portet C, Jeker A et al (1990) The competitive NMDA receptor antagonists CGP 37849 and CGP 39551 are potent, orally-active anticonvulsants in rodents. Naunyn Schmiedebergs Arch Pharmacol 342:61–66

    Article  CAS  PubMed  Google Scholar 

  28. Velisek L, Vachova D, Mares P (1997) Excitatory amino acid antagonists and pentylenetetrazol-induced seizures during ontogenesis. IV. Effects of CGP 39551. Pharmacol Biochem Behav 56:493–498

    Article  CAS  PubMed  Google Scholar 

  29. Fujikawa DG, Daniels AH, Kim JS (1994) The competitive NMDA receptor antagonist CGP 40116 protects against status epilepticus-induced neuronal damage. Epilepsy Res 17:207–219

    Article  CAS  PubMed  Google Scholar 

  30. Millan MH, Patel S, Mello LM, Meldrum BS (1986) Focal injection of 2-amino-7-phosphonoheptanoic acid into prepiriform cortex protects against pilocarpine-induced limbic seizures in rats. Neurosci Lett 70:69–74

    Article  CAS  PubMed  Google Scholar 

  31. Yen W, Williamson J, Bertram EH, Kapur J (2004) A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Res 59:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chapman AG, Graham J, Meldrum BS (1990) Potent oral anticonvulsant action of CPP and CPPene in DBA/2 mice. Eur J Pharmacol 178:97–99

    Article  CAS  PubMed  Google Scholar 

  33. Faingold CL, Millan MH, Boersma CA, Meldrum BS (1988) Excitant amino acids and audiogenic seizures in the genetically epilepsy-prone rat. I. Afferent seizure initiation pathway. Exp Neurol 99:678–686

    Article  CAS  PubMed  Google Scholar 

  34. De Sarro G, De Sarro A (1992) Anticonvulsant activity of competitive antagonists of NMDA receptor in genetically epilepsy-prone rats. Eur J Pharmacol 215:221–229

    Article  PubMed  Google Scholar 

  35. De Sarro G, Ammendola D, Nava F, De Sarro A (1995) Effects of some excitatory amino acid antagonists on imipenem-induced seizures in DBA/2 mice. Brain Res 671:131–140

    Article  PubMed  Google Scholar 

  36. Smith SE, Chapman AG (1993) Acute and chronic anticonvulsant effects of D (−) CPPene in genetically epilepsy-prone rats. Epilepsy Res 15:193–199

    Article  CAS  PubMed  Google Scholar 

  37. Swinyard EA, Sofia RD, Kupferberg HJ (1986) Comparative anticonvulsant activity and neurotoxicity of felbamate and four prototype antiepileptic drugs in mice and rats. Epilepsia 27:27–34

    Article  CAS  PubMed  Google Scholar 

  38. Löscher W (1998) Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy. Prog Neurobiol 54:721–741

    Article  PubMed  Google Scholar 

  39. Croucher MJ, Bradford HF, Sunter DC, Watkins JC (1988) Inhibition of the development of electrical kindling of the prepyriform cortex by daily focal injections of excitatory amino acid antagonists. Eur J Pharmacol 152:29–38

    Article  CAS  PubMed  Google Scholar 

  40. Attwell PJ, Kaura S, Sigala G et al (1995) Blockade of both epileptogenesis and glutamate release by (1S,3S)-ACPD, a presynaptic glutamate receptor agonist. Brain Res 698:155–162

    Article  CAS  PubMed  Google Scholar 

  41. Mori N, Wada JA (1989) Suppression of amygdaloid kindled convulsion following unilateral injection of 2-amino-7-phosphonoheptanoic acid (2-APH) into the substantia innominata of rats. Brain Res 486:141–146

    Article  CAS  PubMed  Google Scholar 

  42. Peterson DW, Collins JF, Bradford HF (1984) Anticonvulsant action of amino acid antagonists against kindled hippocampal seizures. Brain Res 311:176–180

    Article  CAS  PubMed  Google Scholar 

  43. Morimoto K, Katayama K, Inoue K, Sato K (1991) Effects of competitive and noncompetitive NMDA receptor antagonists on kindling and LTP. Pharmacol Biochem Behav 40:893–899

    Article  CAS  PubMed  Google Scholar 

  44. Holmes KH, Bilkey DK, Laverty R (1992) The infusion of an NMDA antagonist into perirhinal cortex suppresses amygdala-kindled seizures. Brain Res 587:285–290

    Article  CAS  PubMed  Google Scholar 

  45. Löscher W, Hönack D (1991) Anticonvulsant and behavioral effects of two novel competitive N-methyl-D-aspartic acid receptor antagonists, CGP 37849 and CGP 39551, in the kindling model of epilepsy. Comparison with MK-801 and carbamazepine. J Pharmacol Exp Ther 256:432–440

    PubMed  Google Scholar 

  46. Dürmüller N, Craggs M, Meldrum BS (1994) The effect of the non-NMDA receptor antagonist GYKI 52466 and NBQX and the competitive NMDA receptor antagonist D-CPPene on the development of amygdala kindling and on amygdala-kindled seizures. Epilepsy Res 17:167–174

    Article  PubMed  Google Scholar 

  47. Ashton D, Willems R, De Prins E, Wauquier A (1988) Selective inhibition of synaptic versus non-synaptic epileptogenesis by NMDA antagonists in the in vitro hippocampus. Epilepsy Res 2:219–222

    Article  CAS  PubMed  Google Scholar 

  48. Brady RJ, Swann JW (1986) Ketamine selectively suppresses synchronized afterdischarges in immature hippocampus. Neurosci Lett 69:143–149

    Article  CAS  PubMed  Google Scholar 

  49. Taberner PV (1976) The anticonvulsant activity of ketamine against seizures induced by pentylenetetrazol and mercaptopropionic acid. Eur J Pharmacol 39:305–311

    Article  CAS  PubMed  Google Scholar 

  50. Parsons CG, Quack G, Bresink I et al (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 34:1239–1258

    Article  CAS  PubMed  Google Scholar 

  51. Zhi JG, Levy G (1990) Effect of orally administered dextromethorphan on theophylline- and pentylenetetrazol-induced seizures in rats. J Pharm Sci 79:1053–1055

    Article  CAS  PubMed  Google Scholar 

  52. Geter-Douglass B, Witkin JM (1999) Behavioral effects and anticonvulsant efficacies of low-affinity, uncompetitive NMDA antagonists in mice. Psychopharmacology (Berl) 146:280–289

    Article  CAS  Google Scholar 

  53. Velísková J, Velísek L, Mares P, Rokyta R (1990) Ketamine suppresses both bicuculline- and picrotoxin-induced generalized tonic-clonic seizures during ontogenesis. Pharmacol Biochem Behav 37:667–674

    Article  PubMed  Google Scholar 

  54. Roth JE, Zhang G, Murray TF, Franklin PH (1992) Dextrorotatory opioids and phencyclidine exert anticonvulsant action in prepiriform cortex. Eur J Pharmacol 215:293–296

    Article  CAS  PubMed  Google Scholar 

  55. Manocha A, Sharma KK, Mediratta PK (2001) Possible mechanism of anticonvulsant effect of ketamine in mice. Indian J Exp Biol 39:1002–1008

    CAS  PubMed  Google Scholar 

  56. Kulkarni SK, Ticku MK (1989) Interaction between GABAergic anticonvulsants and the NMDA receptor antagonist MK 801 against MES- and picrotoxin-induced convulsions in rats. Life Sci 44:1317–1323

    Article  CAS  PubMed  Google Scholar 

  57. Wardley-Smith B, Wann KT (1991) Effects of four drugs on 4-aminopyridine seizures: a comparison with their effects on HPNS. Undersea Biomed Res 18:413–419

    CAS  PubMed  Google Scholar 

  58. Barat SA, Abdel-Rahman MS (1997) Decreased cocaine- and lidocaine-induced seizure response by dextromethorphan and DNQX in rat. Brain Res 756:179–183

    Article  CAS  PubMed  Google Scholar 

  59. Brackett RL, Pouw B, Blyden JF et al (2000) Prevention of cocaine-induced convulsions and lethality in mice: effectiveness of targeting different sites on the NMDA receptor complex. Neuropharmacology 39:407–418

    Article  CAS  PubMed  Google Scholar 

  60. Fidecka S, Langwiński R (1989) Interaction between ketamine and ethanol in rats and mice. Pol J Pharmacol Pharm 41:23–32

    CAS  PubMed  Google Scholar 

  61. Erden BF, Ozdemirci S, Yildiran G et al (1999) Dextromethorphan attenuates ethanol withdrawal syndrome in rats. Pharmacol Biochem Behav 62:537–541

    Article  CAS  PubMed  Google Scholar 

  62. Morrisett RA, Rezvani AH, Overstreet D et al (1990) MK-801 potently inhibits alcohol withdrawal seizures in rats. Eur J Pharmacol 176:103–105

    Article  CAS  PubMed  Google Scholar 

  63. Zaitsev AV, Kim KK, Vasilev DS et al (2015) N-Methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons. J Neurosci Res 93:454–465

    Article  CAS  PubMed  Google Scholar 

  64. Meldrum BS, Turski L, Schwarz M et al (1986) Anticonvulsant action of 1,3-dimethyl-5-aminoadamantane. Pharmacological studies in rodents and baboon, Papio papio. Naunyn Schmiedebergs Arch Pharmacol 332:93–97

    Article  CAS  PubMed  Google Scholar 

  65. Halonen T, Nissinen J, Pitkänen A (1999) Neuroprotective effect of remacemide hydrochloride in a perforant pathway stimulation model of status epilepticus in the rat. Epilepsy Res 34:251–269

    Article  CAS  PubMed  Google Scholar 

  66. Freitas RM, Sousa FCF, Viana GSB, Fonteles MMF (2006) Effect of gabaergic, glutamatergic, antipsychotic and antidepressant drugs on pilocarpine-induced seizures and status epilepticus. Neurosci Lett 408:79–83

    Article  CAS  PubMed  Google Scholar 

  67. Fujikawa DG (1995) Neuroprotective effect of ketamine administered after status epilepticus onset. Epilepsia 36:186–195

    Article  CAS  PubMed  Google Scholar 

  68. Hughes P, Young D, Dragunow M (1993) MK-801 sensitizes rats to pilocarpine induced limbic seizures and status epilepticus. Neuroreport 4:314–316

    Article  CAS  PubMed  Google Scholar 

  69. Ebert U, Brandt C, Löscher W (2002) Delayed sclerosis, neuroprotection, and limbic epileptogenesis after status epilepticus in the rat. Epilepsia 43(Suppl 5):86–95

    Article  PubMed  Google Scholar 

  70. Ding S, Fellin T, Zhu Y et al (2007) Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 27:10674–10684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Clifford DB, Olney JW, Benz AM et al (1990) Ketamine, phencyclidine, and MK-801 protect against kainic acid-induced seizure-related brain damage. Epilepsia 31:382–390

    Article  CAS  PubMed  Google Scholar 

  72. Gilbert ME (1988) The NMDA-receptor antagonist, MK-801, suppresses limbic kindling and kindled seizures. Brain Res 463:90–99

    Article  CAS  PubMed  Google Scholar 

  73. Yourick DL, Repasi RT, Rittase WB et al (1999) Ifenprodil and arcaine alter amygdala-kindling development. Eur J Pharmacol 371:147–152

    Article  CAS  PubMed  Google Scholar 

  74. Garske GE, Palmer GC, Napier JJ et al (1991) Preclinical profile of the anticonvulsant remacemide and its enantiomers in the rat. Epilepsy Res 9:161–174

    Article  CAS  PubMed  Google Scholar 

  75. Trommer BL, Pasternak JF (1990) NMDA receptor antagonists inhibit kindling epileptogenesis and seizure expression in developing rats. Brain Res Dev Brain Res 53:248–252

    Article  CAS  PubMed  Google Scholar 

  76. Giorgi O, Orlandi M, Lecca D, Corda MG (1991) MK-801 prevents chemical kindling induced by pentylenetetrazol in rats. Eur J Pharmacol 193:363–365

    Article  CAS  PubMed  Google Scholar 

  77. De Sarro GB, De Sarro A (1993) Anticonvulsant properties of non-competitive antagonists of the N-methyl-D-aspartate receptor in genetically epilepsy-prone rats: comparison with CPPene. Neuropharmacology 32:51–58

    Article  PubMed  Google Scholar 

  78. Chapman AG, Meldrum BS (1989) Non-competitive N-methyl-D-aspartate antagonists protect against sound-induced seizures in DBA/2 mice. Eur J Pharmacol 166:201–211

    Article  CAS  PubMed  Google Scholar 

  79. Van Luijtelaar EL, Coenen AM (1995) Effects of remacemide and its metabolite FPL 12495 on spike-wave discharges, electroencephalogram and behaviour in rats with absence epilepsy. Neuropharmacology 34:419–425

    Article  PubMed  Google Scholar 

  80. Midzyanovskaya IS, Salonin DV, Bosnyakova DY et al (2004) The multiple effects of ketamine on electroencephalographic activity and behavior in WAG/Rij rats. Pharmacol Biochem Behav 79:83–91

    Article  CAS  PubMed  Google Scholar 

  81. Peeters BWM, Van Rijn C, Van Luijtelaar ELJ, Coenen AM (1989) Antiepileptic and behavioural actions of MK-801 in an animal model of spontaneous absence epilepsy. Epilepsy Res 3:178–181

    Article  CAS  PubMed  Google Scholar 

  82. Lee WL, Hablitz JJ (1990) Effect of APV and ketamine on epileptiform activity in the CA1 and CA3 regions of the hippocampus. Epilepsy Res 6:87–94

    Article  CAS  PubMed  Google Scholar 

  83. Mikolásová R, Velísek L, Vorlícek J, Mares P (1994) Developmental changes of ketamine action against epileptic afterdischarges induced by hippocampal stimulation in rats. Brain Res Dev Brain Res 81:105–112

    Article  PubMed  Google Scholar 

  84. Aram JA, Lodge D (1987) Epileptiform activity induced by alkalosis in rat neocortical slices: block by antagonists of N-methyl-D-aspartate. Neurosci Lett 83:345–350

    Article  CAS  PubMed  Google Scholar 

  85. Sagratella S, Frank C, de Carolis AS (1987) Effects of ketamine and (+) cyclazocine on 4-aminopyridine and “magnesium free” epileptogenic activity in hippocampal slices of rats. Neuropharmacology 26:1181–1184

    Article  CAS  PubMed  Google Scholar 

  86. Hu RQ, Davies JA (1995) The effect of the desglycinyl metabolite of remacemide on cortical wedges prepared from DBA/2 mice. Eur J Pharmacol 287:251–256

    Article  CAS  PubMed  Google Scholar 

  87. Norris SK, King AE (1997) Electrophysiological effects of the anticonvulsant remacemide hydrochloride and its metabolite ARL 12495AA on rat CA1 hippocampal neurons in vitro. Neuropharmacology 36:951–959

    Article  CAS  PubMed  Google Scholar 

  88. Farber NB (2003) The NMDA receptor hypofunction model of psychosis. Ann N Y Acad Sci 1003:119–130

    Article  CAS  PubMed  Google Scholar 

  89. Muir KW, Lees KR (1995) Clinical experience with excitatory amino acid antagonist drugs. Stroke 26:503–513

    Article  CAS  PubMed  Google Scholar 

  90. Leccese AP, Marquis KL, Mattia A, Moreton JE (1986) The convulsant and anticonvulsant effects of phencyclidine (PCP) and PCP analogues in the rat. Behav Brain Res 19:163–169

    Article  CAS  PubMed  Google Scholar 

  91. Löscher W, Hönack D (1990) High doses of memantine (1-amino-3,5-dimethyladamantane) induce seizures in kindled but not in non-kindled rats. Naunyn Schmiedebergs Arch Pharmacol 341:476–481

    PubMed  Google Scholar 

  92. Manohar S, Maxwell D, Winters WD (1972) Development of EEG seizure activity during and after chronic ketamine administration in the rat. Neuropharmacology 11:819–826

    Article  CAS  PubMed  Google Scholar 

  93. Thompson KW, Wasterlain CG (1993) Dextromethorphan and its combination with phenytoin facilitate kindling. Neurology 43:992–994

    Article  CAS  PubMed  Google Scholar 

  94. Tortella FC, Hill RG (1996) EEG seizure activity and behavioral neurotoxicity produced by (+)-MK801, but not the glycine site antagonist L-687,414, in the rat. Neuropharmacology 35:441–448

    Article  CAS  PubMed  Google Scholar 

  95. Mewasingh LD, Sékhara T, Aeby A et al (2003) Oral ketamine in paediatric non-convulsive status epilepticus. Seizure 12:483–489

    Article  CAS  PubMed  Google Scholar 

  96. Synowiec AS, Singh DS, Yenugadhati V et al (2013) Ketamine use in the treatment of refractory status epilepticus. Epilepsy Res 105:183–188

    Article  CAS  PubMed  Google Scholar 

  97. Gaspard N, Foreman B, Judd LM et al (2013) Intravenous ketamine for the treatment of refractory status epilepticus: a retrospective multicenter study. Epilepsia 54:1498–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fang Y, Wang X (2015) Ketamine for the treatment of refractory status epilepticus. Seizure 30:14–20

    Article  PubMed  Google Scholar 

  99. Corssen G, Little SC, Tavakoli M (1974) Ketamine and epilepsy. Anesth Analg 53:319–335

    Article  CAS  PubMed  Google Scholar 

  100. Theodore WH, Raubertas RF, Porter RJ et al (1991) Felbamate: a clinical trial for complex partial seizures. Epilepsia 32:392–397

    Article  CAS  PubMed  Google Scholar 

  101. Devinsky O, Kothari M, Savino L, Luciano D (1994) Felbamate for refractory absence seizures. J Epilepsy 7:189–194

    Article  Google Scholar 

  102. Canger R, Vignoli A, Bonardi R, Guidolin L (1999) Felbamate in refractory partial epilepsy. Epilepsy Res 34:43–48

    Article  CAS  PubMed  Google Scholar 

  103. Dodson WE (1993) Felbamate in the treatment of Lennox-Gastaut syndrome: results of a 12-month open-label study following a randomized clinical trial. Epilepsia 34(Suppl 7):S18–S24

    Article  PubMed  Google Scholar 

  104. Pellock JM, Faught E, Leppik IE et al (2006) Felbamate: consensus of current clinical experience. Epilepsy Res 71:89–101

    Article  PubMed  Google Scholar 

  105. Pellock JM (1999) Felbamate. Epilepsia 40(Suppl 5):S57–S62

    Article  CAS  PubMed  Google Scholar 

  106. Sveinbjornsdottir S, Sander JW, Upton D et al (1993) The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res 16:165–174

    Article  CAS  PubMed  Google Scholar 

  107. Schmitt B, Netzer R, Fanconi S et al (1994) Drug refractory epilepsy in brain damage: effect of dextromethorphan on EEG in four patients. J Neurol Neurosurg Psychiatry 3:333–339

    Article  Google Scholar 

  108. Chien Y, Lin M, Weng W et al (2012) Dextromethorphan in the treatment of early myoclonic encephalopathy evolving into migrating partial seizures in infancy. J Formos Med Assoc 111:290–294

    Article  CAS  PubMed  Google Scholar 

  109. Wieser HG, Beck H (1992) Improvement of medically refractory temporal lobe epilepsy with dextromethorphan. J Epilepsy 5:246–247

    Article  Google Scholar 

  110. Muir K, Palmer G (1991) Remacemide. Epilepsy Res Suppl 3:147–152

    CAS  PubMed  Google Scholar 

  111. Whitehead J (2001) Monotherapy trials: sequential design. Epilepsy Res 45:81–87

    Article  CAS  PubMed  Google Scholar 

  112. Chadwick DW, Betts TA, Boddie HG et al (2002) Remacemide hydrochloride as an add-on therapy in epilepsy: a randomized, placebo-controlled trial of three dose levels (300, 600 and 1200 mg/day) in a Q.I.D. regimen. Seizure 11:114–123

    Article  CAS  PubMed  Google Scholar 

  113. Mazarati AM, Wasterlain CG (1999) N-Methyl-D-asparate receptor antagonists abolish the maintenance phase of self-sustaining status epilepticus in rat. Neurosci Lett 265:187–190

    Article  CAS  PubMed  Google Scholar 

  114. Pitkänen A, Mathiesen C, Rønn LCB et al (2007) Effect of novel AMPA antagonist, NS1209, on status epilepticus. An experimental study in rat. Epilepsy Res 74:45–54

    Article  PubMed  CAS  Google Scholar 

  115. Gill M, Frausto S, Ikoma M et al (2010) A series of structurally novel heterotricyclic α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor-selective antagonists. Br J Pharmacol 160:1417–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yamaguchi S, Donevan SD, Rogawski MA (1993) Anticonvulsant activity of AMPA/kainate antagonists: comparison of GYKI 52466 and NBOX in maximal electroshock and chemoconvulsant seizure models. Epilepsy Res 15:179–184

    Article  CAS  PubMed  Google Scholar 

  117. Namba T, Morimoto K, Sato K et al (1994) Antiepileptogenic and anticonvulsant effects of NBQX, a selective AMPA receptor antagonist, in the rat kindling model of epilepsy. Brain Res 638:36–44

    Article  CAS  PubMed  Google Scholar 

  118. Schoepp DD, Lodge D, Bleakman D et al (1995) In vitro and in vivo antagonism of AMPA receptor activation by (3S, 4aR, 6R, 8aR)-6-[2-(1(2)H-tetrazole-5-yl) ethyl] decahydroisoquinoline-3-carboxylic acid. Neuropharmacology 34:1159–1168

    Article  CAS  PubMed  Google Scholar 

  119. Katsumori H, Minabe Y, Osawa M, Ashby CR (1998) Acute effects of various GABA receptor agonists and glutamate antagonists on focal hippocampal seizures in freely moving rats elicited by low-frequency stimulation. Synapse 28:103–109

    Article  CAS  PubMed  Google Scholar 

  120. Kodama M, Yamada N, Sato K et al (1999) Effects of YM90K, a selective AMPA receptor antagonist, on amygdala-kindling and long-term hippocampal potentiation in the rat. Eur J Pharmacol 374:11–19

    Article  CAS  PubMed  Google Scholar 

  121. Hara H, Yamada N, Kodama M et al (2006) Effect of YM872, a selective and highly water-soluble AMPA receptor antagonist, in the rat kindling and rekindling model of epilepsy. Eur J Pharmacol 531:59–65

    Article  CAS  PubMed  Google Scholar 

  122. Mignani S, Bohme GA, Birraux G et al (2002) 9-Carboxymethyl-5H,10H-imidazo[1,2-a]indeno[1,2-e]pyrazin-4-one-2-carbocylic Acid (RPR117824): selective anticonvulsive and neuroprotective AMPA antagonist. Bioorg Med Chem 10:1627–1637

    Article  CAS  PubMed  Google Scholar 

  123. Chapman AG, Smith SE, Meldrum BS (1991) The anticonvulsant effect of the non-NMDA antagonists, NBQX and GYKI 52466, in mice. Epilepsy Res 9:92–96

    Article  CAS  PubMed  Google Scholar 

  124. Wienrich M, Brenner M, Loscher W et al (2001) In vivo pharmacology of BIIR 561 CL, a novel combined antagonist of AMPA receptors and voltage-dependent Na(+) channels. Br J Pharmacol 133:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gigler G, Móricz K, Ágoston M et al (2007) Neuroprotective and anticonvulsant effects of EGIS-8332, a non-competitive AMPA receptor antagonist, in a range of animal models. Br J Pharmacol 152:151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Howes JF, Bell C (2007) Talampanel. Neurotherapeutics 4:126–129

    Article  CAS  PubMed  Google Scholar 

  127. Hanada T, Hashizume Y, Tokuhara N et al (2011) Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 52:1331–1340

    Article  CAS  PubMed  Google Scholar 

  128. Nielsen EO, Varming T, Mathiesen C et al (1999) SPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity. J Pharmacol Exp Ther 289:1492–1501

    CAS  PubMed  Google Scholar 

  129. Langan YM, Lucas R, Jewell H et al (2003) Talampanel, a new antiepileptic drug: single- and multiple-dose pharmacokinetics and initial 1-week experience in patients with chronic intractable epilepsy. Epilepsia 44:46–53

    Article  CAS  PubMed  Google Scholar 

  130. Chappell AS, Sander JW, Brodie MJ et al (2002) A crossover, add-on trial of talampanel in patients with refractory partial seizures. Neurology 58:1680–1682

    Article  CAS  PubMed  Google Scholar 

  131. Grossman SA, Ye X, Chamberlain M et al (2009) Talampanel with standard radiation and temozolomide in patients with newly diagnosed glioblastoma: a multicenter phase II trial. J Clin Oncol 27:4155–4161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pascuzzi RM, Shefner J, Chappell AS et al (2010) A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:266–271

    Article  CAS  PubMed  Google Scholar 

  133. Krauss GL, Bar M, Biton V et al (2012) Tolerability and safety of perampanel: two randomized dose-escalation studies. Acta Neurol Scand 125:8–15

    Article  CAS  PubMed  Google Scholar 

  134. Krauss GL, Perucca E, Ben-Menachem E et al (2013) Perampanel, a selective, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist, as adjunctive therapy for refractory partial-onset seizures: interim results from phase III, extension study 307. Epilepsia 54:126–134

    Article  CAS  PubMed  Google Scholar 

  135. Vignes M, Bleakman D, Lodge D, Collingridge GL (1997) The synaptic activation of the GluR5 subtype of kainate receptor in area CA3 of the rat hippocampus. Neuropharmacology 36:1477–1481

    Article  CAS  PubMed  Google Scholar 

  136. Cossart R, Esclapez M, Hirsch JC et al (1998) GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat Neurosci 1:470–478

    Article  CAS  PubMed  Google Scholar 

  137. Christensen JK, Paternain AV, Selak S et al (2004) A mosaic of functional kainate receptors in hippocampal interneurons. J Neurosci 24:8986–8993

    Article  CAS  PubMed  Google Scholar 

  138. Wu LJ, Zhao MG, Toyoda H et al (2005) Kainate receptor-mediated synaptic transmission in the adult anterior cingulate cortex. J Neurophysiol 94:1805–1813

    Article  CAS  PubMed  Google Scholar 

  139. Wondolowski J, Frerking M (2009) Subunit-dependent postsynaptic expression of kainate receptors on hippocampal interneurons in area CA1. J Neurosci 29:563–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Aroniadou-Anderjaska V, Pidoplichko VI, Figueiredo TH et al (2012) Presynaptic facilitation of glutamate release in the basolateral amygdala: a mechanism for the anxiogenic and seizurogenic function of GluK1 receptors. Neuroscience 221:157–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jane DE, Lodge D, Collingridge GL (2009) Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology 56:90–113

    Article  CAS  PubMed  Google Scholar 

  142. Smolders I, Bortolotto ZA, Clarke VRJ et al (2002) Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures. Nat Neurosci 5:796–804

    CAS  PubMed  Google Scholar 

  143. Fritsch B, Reis J, Gasior M et al (2014) Role of GluK1 kainate receptors in seizures, epileptic discharges, and epileptogenesis. J Neurosci 34:5765–5775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Vincent P, Mulle C (2009) Kainate receptors in epilepsy and excitotoxicity. Neuroscience 158:309–323

    Article  CAS  PubMed  Google Scholar 

  145. Kaminski RM, Banerjee M, Rogawski MA (2004) Topiramate selectively protects against seizures induced by ATPA, a GluR5 kainate receptor agonist. Neuropharmacology 46:1097–1104

    Article  CAS  PubMed  Google Scholar 

  146. Alexander GM, Godwin DW (2006) Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res 71:1–22

    Article  CAS  PubMed  Google Scholar 

  147. Wong RK, Bianchi R, Taylor GW, Merlin LR (1999) Role of metabotropic glutamate receptors in epilepsy. Adv Neurol 79:685–698

    CAS  PubMed  Google Scholar 

  148. Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev 29:83–120

    Article  CAS  PubMed  Google Scholar 

  149. Tizzano JP, Griffey KI, Johnson JA et al (1993) Intracerebral 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) produces limbic seizures that are not blocked by ionotropic glutamate receptor antagonists. Neurosci Lett 162:12–16

    Article  CAS  PubMed  Google Scholar 

  150. Chapman AG, Yip PK, Yap JS et al (1999) Anticonvulsant actions of LY 367385 ((+)-2-methyl-4-carboxyphenylglycine) and AIDA ((RS)-1-aminoindan-1,5-dicarboxylic acid). Eur J Pharmacol 368:17–24

    Article  CAS  PubMed  Google Scholar 

  151. Renaud J, Emond M, Meilleur S et al (2002) AIDA, a class I metabotropic glutamate-receptor antagonist limits kainate-induced hippocampal dysfunction. Epilepsia 43:1306–1317

    Article  CAS  PubMed  Google Scholar 

  152. Shannon HE, Peters SC, Kingston AE (2005) Anticonvulsant effects of LY456236, a selective mGlu1 receptor antagonist. Neuropharmacology 49:188–195

    Article  CAS  PubMed  Google Scholar 

  153. De Vry J, Horváth E, Schreiber R (2001) Neuroprotective and behavioral effects of the selective metabotropic glutamate mGlu(1) receptor antagonist BAY 36-7620. Eur J Pharmacol 428:203–214

    Article  PubMed  Google Scholar 

  154. Ngomba RT, Ferraguti F, Badura A et al (2008) Positive allosteric modulation of metabotropic glutamate 4 (mGlu4) receptors enhances spontaneous and evoked absence seizures. Neuropharmacology 54:344–354

    Article  CAS  PubMed  Google Scholar 

  155. D’Amore V, Santolini I, Van Rijn CM et al (2013) Potentiation of mGlu5 receptors with the novel enhancer, VU0360172, reduces spontaneous absence seizures in WAG/Rij rats. Neuropharmacology 66:330–338

    Article  PubMed  CAS  Google Scholar 

  156. Chapman AG, Nanan K, Williams M, Meldrum BS (2000) Anticonvulsant activity of two metabotropic glutamate Group I antagonists selective for the mGlu5 receptor: 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and (E)-6-methyl-2-styryl-pyridine (SIB 1893). Neuropharmacology 39:1567–1574

    Article  CAS  PubMed  Google Scholar 

  157. Mares P (2009) Age-dependent anticonvulsant action of antagonists of group I glutamate metabotropic receptors in rats. Epilepsy Res 83:215–223

    Article  CAS  PubMed  Google Scholar 

  158. Zavala-Tecuapetla C, Kubová H, Otáhal J et al (2014) Age-dependent suppression of hippocampal epileptic afterdischarges by metabotropic glutamate receptor 5 antagonist MTEP. Pharmacol Rep 66:927–930

    Article  CAS  PubMed  Google Scholar 

  159. Borowicz KK, Łuszczki JJ, Czuczwar SJ (2004) SIB 1893, a selective mGluR5 receptor antagonist, potentiates the anticonvulsant activity of oxcarbazepine against amygdala-kindled convulsions in rats. Pol J Pharmacol 56:459–464

    CAS  PubMed  Google Scholar 

  160. Monn JA, Valli MJ, Massey SM et al (1997) Design, synthesis, and pharmacological characterization of (+)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY354740): a potent, selective, and orally active group 2 metabotropic glutamate receptor agonist possessing anticonvulsant and anxiolytic properties. J Med Chem 40:528–537

    Article  CAS  PubMed  Google Scholar 

  161. Attwell PJ, Koumentaki A, Abdul-Ghani AS et al (1998) Specific group II metabotropic glutamate receptor activation inhibits the development of kindled epilepsy in rats. Brain Res 787:286–291

    Article  CAS  PubMed  Google Scholar 

  162. Klodzinska A, Bijak M, Chojnacka-Wojcik E et al (2000) Roles of group II metabotropic glutamate receptors in modulation of seizure activity. Naunyn Schmiedebergs Arch Pharmacol 361:283–288

    Article  CAS  PubMed  Google Scholar 

  163. Caulder EH, Riegle MA, Godwin DW (2014) Activation of Group 2 metabotropic glutamate receptors reduces behavioral and electrographic correlates of pilocarpine induced status epilepticus. Epilepsy Res 108:171–181

    Article  CAS  PubMed  Google Scholar 

  164. Miyamoto M, Ishida M, Shinozaki H (1997) Anticonvulsive and neuroprotective actions of a potent agonist (DCG-IV) for group II metabotropic glutamate receptors against intraventricular kainate in the rat. Neuroscience 77:131–140

    Article  CAS  PubMed  Google Scholar 

  165. Moldrich RX, Jeffrey M, Talebi A et al (2001) Anti-epileptic activity of group II metabotropic glutamate receptor agonists (−−)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268) and (−−)-2-thia-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY389795). Neuropharmacology 41:8–18

    Article  CAS  PubMed  Google Scholar 

  166. Ngomba RT, Biagioni F, Casciato S et al (2005) The preferential mGlu2/3 receptor antagonist, LY341495, reduces the frequency of spike-wave discharges in the WAG/Rij rat model of absence epilepsy. Neuropharmacology 49(Suppl 1):89–103

    Article  CAS  PubMed  Google Scholar 

  167. Tang E, Yip PK, Chapman AG et al (1997) Prolonged anticonvulsant action of glutamate metabotropic receptor agonists in inferior colliculus of genetically epilepsy-prone rats. Eur J Pharmacol 327:109–115

    Article  CAS  PubMed  Google Scholar 

  168. Abdul-Ghani AS, Attwell PJE, Kent NS et al (1997) Anti-epileptogenic and anticonvulsant activity of L-2-amino-4-phosphonobutyrate, a presynaptic glutamate receptor agonist. Brain Res 755:202–212

    Article  CAS  PubMed  Google Scholar 

  169. Watanabe Y, Kaida Y, Fukuhara S et al (2011) Participation of metabotropic glutamate receptors in pentetrazol-induced kindled seizure. Epilepsia 52:140–150

    Article  PubMed  Google Scholar 

  170. Tizzano JP, Griffey KI, Schoepp DD (1995) Induction or protection of limbic seizures in mice by mGluR subtype selective agonists. Neuropharmacology 34:1063–1067

    Article  CAS  PubMed  Google Scholar 

  171. Suzuki K, Mori N, Kittaka H et al (1996) Anticonvulsant action of metabotropic glutamate receptor agonists in kindled amygdala of rats. Neurosci Lett 204:41–44

    Article  CAS  PubMed  Google Scholar 

  172. Chapman AG, Nanan K, Yip P, Meldrum BS (1999) Anticonvulsant activity of a metabotropic glutamate receptor 8 preferential agonist, (R, S)-4-phosphonophenylglycine. Eur J Pharmacol 383:23–27

    Article  CAS  PubMed  Google Scholar 

  173. Chapman AG, Talebi A, Yip PK, Meldrum BS (2001) Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid. Eur J Pharmacol 424:107–113

    Article  CAS  PubMed  Google Scholar 

  174. Gasparini F, Bruno V, Battaglia G et al (1999) (R, S)-4-Phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J Pharmacol Exp Ther 289:1678–1687

    CAS  PubMed  Google Scholar 

  175. Domin H, Gołembiowska K, Zie B, Maria S (2014) Group III mGlu receptor agonist, ACPT-I, exerts potential neuroprotective effects in vitro and in vivo. Neurotox Res 26:99–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bruno V, Battaglia G, Ksiazek I et al (2000) Selective activation of mGlu4 metabotropic glutamate receptors is protective against excitotoxic neuronal death. J Neurosci 20:6413–6420

    CAS  PubMed  Google Scholar 

  177. Folbergrová J, Haugvicová R, Mares P (2003) Seizures induced by homocysteic acid in immature rats are prevented by group III metabotropic glutamate receptoragonist (R, S)-4-phosphonophenylglycine. Exp Neurol 180:46–54

    Article  PubMed  CAS  Google Scholar 

  178. Folbergrová J, Druga R, Haugvicová R et al (2008) Anticonvulsant and neuroprotective effect of (S)-3,4-dicarboxyphenylglycine against seizures induced in immature rats by homocysteic acid. Neuropharmacology 54:665–675

    Article  PubMed  CAS  Google Scholar 

  179. Ghauri M, Chapman AG, Meldrum BS (1996) Convulsant and anticonvulsant actions of agonists and antagonists of group III mGluRs. Neuroreport 7:1469–1474

    Article  CAS  PubMed  Google Scholar 

  180. Dietrich D, Kral T, Clusmann H et al (1999) Short communication Reduced function of L-AP4-sensitive metabotropic glutamate receptors in human epileptic sclerotic hippocampus. Eur J Neurosci 11:1109–1113

    Article  CAS  PubMed  Google Scholar 

  181. Snead OC, Banerjee PK, Burnham M, Hampson D (2000) Modulation of absence seizures by the GABA(A) receptor: a critical role for metabotropic glutamate receptor 4 (mGluR4). J Neurosci 20:6218–6224

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Heidy Higuera Hernández for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manola Cuéllar-Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cuéllar-Herrera, M., Santana-Gómez, C.E., Carmona-Cruz, F., Vázquez-Barrón, D., Velasco, F., Velasco, A.L. (2016). Glutamate Receptors as Targets for Novel Antiepileptic Drug Therapy. In: Talevi, A., Rocha, L. (eds) Antiepileptic Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6355-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6355-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6353-9

  • Online ISBN: 978-1-4939-6355-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics